首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non‐reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [14C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall‐rich) leaf material. No [14C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under‐expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation.  相似文献   

2.
The AMP-activated protein kinase (AMPK) is an important metabolic sensor/effector that coordinates many of the changes in mammalian tissues during variations in energy availability. We have sought to create an in vivo genetic model of chronic AMPK activation, selecting murine skeletal muscle as a representative tissue where AMPK plays important roles. Muscle-selective expression of a mutant noncatalytic gamma1 subunit (R70Qgamma) of AMPK activates AMPK and increases muscle glycogen content. The increase in glycogen content requires the presence of the endogenous AMPK catalytic alpha-subunit, since the offspring of cross-breeding of these mice with mice expressing a dominant negative AMPKalpha subunit have normal glycogen content. In R70Qgamma1-expressing mice, there is a small, but significant, increase in muscle glycogen synthase (GSY) activity associated with an increase in the muscle expression of the liver isoform GSY2. The increase in glycogen content is accompanied, as might be expected, by an increase in exercise capacity. Transgene expression of this mutant AMPKgamma1 subunit may provide a useful model for the chronic activation of AMPK in other tissues to clarify its multiple roles in the regulation of metabolism and other physiological processes.  相似文献   

3.
The genetic information in DNA is transcribed to mRNA and then translated to proteins, which form the building blocks of life. Translation, or protein synthesis, is hence a central cellular process. We have developed a gene-sequence-specific mechanistic model for the translation machinery, which accounts for all the elementary steps of the translation mechanism. We performed a sensitivity analysis to determine the effects of kinetic parameters and concentrations of the translational components on protein synthesis rate. Utilizing our mathematical framework and sensitivity analysis, we investigated the translational kinetic properties of a single mRNA species in Escherichia coli. We propose that translation rate at a given polysome size depends on the complex interplay between ribosomal occupancy of elongation phase intermediate states and ribosome distributions with respect to codon position along the length of the mRNA, and this interplay leads to polysome self-organization that drives translation rate to maximum levels.  相似文献   

4.
5.
Menet JS  Rosbash M 《Molecular cell》2011,43(5):695-697
Progressive phosphorylation of circadian clock proteins is a hallmark of time-keeping. In this issue of Molecular Cell, Querfurth et?al. (2011) demonstrate that phosphorylation of Neurospora FRQ induces?a conformational change, which can account for its temporally gated degradation.  相似文献   

6.
7.
8.
9.
Elucidating the role of viral genes in transgenic plants revealed that the movement protein (MP) from tobacco mosaic virus is responsible for altered carbohydrate allocation in tobacco and potato plants. To study whether this is a general feature of viral MPs, the movement protein MP17 of potato leafroll virus (PLRV), a phloem-restricted luteovirus, was constitutively expressed in tobacco plants. Transgenic lines were strongly reduced in height and developed bleached and sometimes even necrotic areas on their source leaves. Levels of soluble sugars and starch were significantly increased in source leaves. Yet, in leaf laminae the hexose—phosphate content was unaltered and ATP reduced to only a small extent, indicating that these leaves were able to maintain homeostatic conditions by compartmentalization of soluble sugars, probably in the vacuole. On the contrary, midribs contained lower levels of soluble sugars, ATP, hexose—phosphates and UDP-glucose supporting the concept of limited uptake and catabolism of sucrose in the phloem. The accumulation of carbohydrates led to a decreased photosynthetic capacity and carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) probably owing to decreased expression of photosynthetic proteins. In parallel, levels of pathogenesis-related proteins were elevated which may be the reason for the obtained limited resistance against the unrelated potato virus Y (PVY)N in the transgenic tobacco plants. Ultrathin sections of affected leaves harvested from 2-week-old plants revealed plasmodesmal alterations in the phloem tissue while plasmodesmata between mesophyll cells were indistinguishable from wild-type. These data favour the phloem tissue to be the primary site of PLRV MP17 action in altering carbohydrate metabolism.  相似文献   

10.

Background  

This paper considers the problem of identifying pathways through metabolic networks that relate to a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built using information specific to each path and combined into an ensemble prediction for the response.  相似文献   

11.
We tried some improvement of inosine production using an inosine-producing mutant of Escherichia coli which is deficient in purF (phosphoribosylpyrophosphate (PRPP) amidotransferase gene), purA (succinyl-adenosine 5'-monophosphate (AMP) synthetase gene), deoD (purine nucleoside phosphorylase gene), purR (purine repressor gene) and add (adenosine deaminase gene), and harboring the desensitized PRPP amidotransferase gene as a plasmid. The guaB (inosine 5'-monophosphate (IMP) dehydrogenase gene) disruption brought about a slightly positive effect on the inosine productivity. Alternatively, the gsk (guanosine-inosine kinase gene) disruption caused a considerable amount of guanosine accumulation together with a slight increase in the inosine productivity. The further addition of guaC (guanosine 5'-monophosphate (GMP) reductase gene) disruption did not lead to an increased guanosine accumulation, but brought about the decrease of inosine accumulation.  相似文献   

12.
13.
After it is incorporated into the body, uranium accumulates in bone and kidney and is a nephrotoxin. Although acute or short-term uranium exposures are well documented, there is a lack of information about the effects of chronic exposure to low levels of uranium on both occupationally exposed people and the general public. The objective of this study was to identify the distribution and chemical form of uranium in kidneys of rats chronically exposed to uranium in drinking water (40 mg uranium liter(-1)). Rats were killed humanely 6, 9, 12 and 18 months after the beginning of exposure. Kidneys were dissected out and prepared for optical and electron microscope analysis and energy dispersive X-ray (XEDS) or electron energy loss spectrometry (EELS). Microscopic analysis showed that proximal tubule cells from contaminated rats had increased numbers of vesicles containing dense granular inclusions. These inclusions were composed of clusters of small granules and increased in number with the exposure duration. Using XEDS and EELS, these characteristic granules were identified as iron oxides. Uranium was found to be present as a trace element but was never associated with the iron granules. These results suggested that the mechanisms of iron homeostasis in kidney could be affected by chronic uranium exposure.  相似文献   

14.
Abstract A simple and rapid method is described to determine the plasmid content of cyanobacteria. This procedure is a modification of the Eckhardt in-well lysis and agarose gel electrophoresis technique and can be used for both unicellular and filamentous cyanobacteria.  相似文献   

15.
Ectopic lipid accumulation is now known to be a mechanism that contributes to organ injury in the context of metabolic diseases. In muscle and liver, accumulation of lipids impairs insulin signaling. This hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, aging and lipodystrophy. Increasing data suggest that lipid accumulation in the kidneys could also contribute to the alteration of kidney function in the context of metabolic syndrome and obesity. Furthermore and more unexpectedly, animal models of kidney disease exhibit a decreased adiposity and ectopic lipid redistribution suggesting that kidney disease may be a state of lipodystrophy. However, whether this abnormal lipid partitioning during chronic kidney disease (CKD) may have any functional impact in these tissues needs to be investigated.  相似文献   

16.
17.
Mitochondrial dysfunction is the cause of a variety of pathologies associated with high energy-requiring tissues like the brain and muscles. Here we show that aluminum (Al) perturbs oxidative-ATP production in human hepatocytes (HepG2 cells). This Al-induced mitochondrial dysfunction promotes enhanced lipogenesis and the accumulation of the very low density lipoprotein (VLDL). Al-stressed HepG2 cells secreted more cholesterol, lipids and proteins than control cells. The level of apolipoprotein B-100 (ApoB-100) was markedly increased in the culture medium of the cells exposed to Al. (13)C-NMR and HPLC studies revealed a metabolic profile favouring lipid production and lowered ATP synthesis in Al-treated cells. Electrophoretic and immunoblot analyses pointed to increased activities and expression of lipogenic enzymes such as glycerol 3-phosphate dehydrogenase (G3PDH), acetyl CoA carboxylase (ACC) and ATP-citrate lyase (CL) in the hepatocytes exposed to Al, and a sharp diminution of enzymes mediating oxidative phosphorylation. D-Fructose elicited the maximal secretion of VLDL in the Al-challenged cells. These results suggest that the Al-evoked metabolic shift favours the accumulation of lipids at the expense of oxidative energy production in hepatocytes.  相似文献   

18.
The understanding of dynamic metabolic regulations is important for physiological studies and strain characterization tasks. The present study combined transient experiments with online metabolic flux analysis (MFA) in order to quantify metabolic regulations, namely carbon catabolite repression of respiration and transient acetic-acid production, in Saccharomyces cerevisiae during aerobic growth on glucose. The aim was to investigate which additional information can be gained from using a small metabolic flux model to study transient growth provoked by shift-up and shift-down experiments, compared to online monitoring alone. The MFA model allowed us to propose new correlations between pathways of the central metabolism. A linear correlation between glycolytic flux and respiratory capacity holds for shift-down and shift-up experiments. This confirmed that respiratory functions were subjected to carbon catabolite repression and suggested that respiratory capacity is controlled by the glycolytic flux rather than the glucose influx. Furthermore, the model showed that control of repression of respiration by the glycolytic flux was a dynamic phenomenon. Co-factor balancing within the MFA model showed that transient acetic-acid production indicated a transient limitation in another part of the central metabolism but not in oxidative phosphorylation. However, at super-critical growth rates and when coupling of anabolism and catabolism is resumed, the limitation shifts to oxidative phosphorylation, with the consequence that ethanol is formed. The online application of small metabolic flux models to transient experiments enhanced the physiological insight into transient growth and opens up the use of transient experiments as an efficient tool to understand dynamic metabolic regulations.  相似文献   

19.
The analysis of large datasets describing reproductive isolation between species has been extremely influential in the study of speciation. However, the statistical methods currently used for these data limit the ability to make direct inferences about the factors predicting the evolution of reproductive isolation. As a result, our understanding of iconic patterns and rules of speciation rely on indirect analyses that have clear statistical limitations. Phylogenetic mixed models are commonly used in ecology and evolution, but have not been applied to studies of reproductive isolation. Here I describe a flexible framework using phylogenetic mixed models to analyze data collected at different evolutionary scales, to test both categorical and continuous predictor variables, and to test the effect of multiple predictors on rates and patterns of reproductive isolation simultaneously. I demonstrate the utility of this framework by re‐analyzing four classic datasets, from both animals and plants, and evaluating several hypotheses that could not be tested in the original studies: In the Drosophila and Bufonidae datasets, I found support for more rapid accumulation of reproductive isolation in sympatric species pairs compared to allopatric species pairs. Using Silene and Nolana, I found no evidence supporting the hypothesis that floral differentiation elevates postzygotic reproductive isolation. The faster accumulation of postzygotic isolation in sympatry is likely the result of species coexistence determined by the level of postzygotic isolation between species. In addition, floral trait divergence does not appear to translate into pleiotropic effects on postzygotic reproductive isolation. Overall, these methods can allow researchers to test new hypotheses using a single statistical method, while remedying the statistical limitations of several previous methods.  相似文献   

20.
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号