首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion   总被引:37,自引:0,他引:37  
Calcium-dependent cell adhesion molecules (CAMs) mediate intercellular adhesion in epithelial cells and in preimplantation mammalian embryos. One of these molecules, cell-CAM 120/80, is found on cells as a 120-kd membrane glycoprotein and as a soluble 80-kd species in conditioned culture medium [Damsky et al: Cell 34:455, 1983]. We have purified to homogeneity the soluble 80-kd fragment of cell-CAM 120/80 by using monoclonal antibody affinity chromatography. We have shown that the purified molecule can disrupt cell-cell adhesion in cultured epithelial cells, thus indicating that it is directly involved in the adhesive process. In addition, we have further characterized both the 120-kd cell-associated molecule and its 80-kd fragment, including N-terminal sequence analysis.  相似文献   

2.
Upon starvation the cellular slime mold, Dictyostelium purpureum, develops a form of cell-cell adhesion aiding in the formation of large multicellular aggregates, which are capable of further differentiation. The molecule that mediates this adhesion is a glycoprotein of Mr approximately 40,000. The protein shares a common carbohydrate epitope with another well-characterized cell adhesion molecule from Dictyostelium discoideum, contact sites A, but the polypeptides to which it is attached differ for each species. Although mediating a developmental form of adhesiveness, the protein is synthesized in vegetative cells at a time when they do not adhere. Most of the vegetative protein is associated with cell membranes and appears to be on the surface of these cells. The protein is compared to other cell adhesion molecules from other species of cellular slime molds, and possible explanations for its inability to function in vegetative cells are discussed.  相似文献   

3.
We recently identified a 105,000-dalton plasma membrane glycoprotein, denoted cell-CAM 105 (CAM, cell adhesion molecule), that is involved in intercellular adhesion of reaggregating rat hepatocytes (Ocklind, C., and B. Obrink, 1982, J. Biol. Chem., 257:6788-6795). In this communication we used a monospecific rabbit antiserum against cell-CAM 105 to localize the antigen by indirect immunofluorescence on isolated rat cells and on frozen rat tissue sections. This antiserum stained the surface of freshly isolated hepatocytes. In liver sections, however, the fluorescence seemed to be located exclusively along the bile canaliculi. In addition, cell-CAM 105 showed a very specific tissue distribution. Thus a specific fluorescence was seen only in the epithelia of the stomach, the small intestine, the large intestine, the glandular epithelium of the parotid gland, and the tubules of the kidney. No specific fluorescence was found in variety of other tissues, including cartilage, interstitial connective tissue, smooth muscle, skeletal muscle, heart muscle, eye, brain, skin, the epithelia of oesophagus, bladder, uterin mucosa, thyroid follicles, prostate gland, or collecting ducts of the kidney. In the simple epithelia of the intestine and the kidney tubules the fluorescence was confined to the apical, luminal portion. Thus, both in these epithelia and in liver, cell-CAM 105 was confined to the apical, luminal portion. Thus, both in these epithelia and in liver, cell-CAM 105 was located where the typical junctional complexes between cells are found. These findings taken together with the fact that cell-CAM 105 is involved in intercellular adhesion between hepatocytes suggest with the fac that cell-CAM 105 is involved in intercellular adhesion between hepatocytes suggest that cell-CAM 105 is a member of the junctional complexes of hepatocytes and some simple epithelia.  相似文献   

4.
The long-term stationary culture of postimplanatation embryos without extraembryonic membranes is a method to assess their developmental potential in vitro. The method was almost exclusively used on rat embryos, while mouse embryos were considered unsuitable due to their poor differentiation. In present study the postimplantation mouse embryos were used to verify potential of this method in mice. In addition, the course of in vitro differentiation was compared to embryo development in situ. Embryos were cultivated for maximum of 14 days and morphology and differentiation was analysed on serial semithin sections. Although anatomical relationships were lost from the beginning of the cultivation, the differentiation was only delayed, and the developmental potential after long-term culture was comparable to those observed in rats. Therefore the advantages of long-term cultivation could be utilized to analyse the differentiation of numerous lines of genetically modified mice with impaired postimplantation development.  相似文献   

5.
The distribution pattern of the avian alpha 6 integrin subunit was examined during early stages of development. The results show that this subunit is prevalent in cells of the developing nervous system and muscle. alpha 6 is first observed on neuroepithelial cells of the cranial neural plate and trunk neural tube. With time, immunoreactivity becomes prominent near the lumen and ventrolateral portions of the neural tube, co-distributing with neurons and axons, particularly notable on commissural neurons. The alpha 6 expression pattern is dynamic in the neural tube, with immunoreactivity peaking by embryonic day 6 (stage 30) and decreasing thereafter. The ventral roots and retina exhibit high levels of immunoreactivity throughout development. In the peripheral nervous system, alpha 6 immunoreactivity first appears on a subpopulation of sympathoadrenal cells around the dorsal aorta and later in the dorsal root ganglia shortly after gangliogenesis. Immunoreactivity appears on prospective myotomal cells as the somites delaminate into the dermomyotome and sclerotome, remaining prominent on myoblasts and differentiated muscle at all stages. The mesonephros also has intense immunoreactivity. In the periphery, alpha 6 immunoreactive regions often in proximity to laminin, which is thought to be the ligand of alpha 6 beta 1 integrin.  相似文献   

6.
Evidence is presented that expression of the two myelin-associated glycoprotein mRNAs is developmentally regulated in mouse brain. In quaking mouse, the mRNA without a 45-nucleotide exon portion was scarcely expressed throughout development. We conclude that the mechanism of splicing out the 45-nucleotide exon portion is lacking in quaking mouse.  相似文献   

7.
Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, α chain),and CD11a (LFA-1, α chain) on mouse oocytes, and pre- and peri-implantation stage embryos was exam-ined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at theoocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM,also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On theother hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at thecompacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophecto-derm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remainedsignificantly expressed throughout and after blastocyst hatching was expressed on the polar trophecto-derm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression ofboth VCAM-1 and CD11a was undetectable throughout. The diametrical temporal expression pattern ofICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesionmolecules may be important for interaction of the embryo with the maternal cellular environment as wellas for continuing development and survival of the early embryo.  相似文献   

8.
Cell surface carbohydrates undergo marked alterations during mouse embryogenesis. In preimplantation embryos, many carbohydrate markers show stage-specific expression in diverse ways. In early postimplantation embryos, certain carbohydrate markers are localized in defined regions in the embryo. Important carriers of stage-specific carbohydrates are the lactoseries structure (Gal beta 1----4GlcNAc) and the globoseries structure (Gal alpha 1----4Gal). Notably, the glycoprotein-bound large carbohydrate of poly-N-acetyllactosamine-type ([Gal beta 1----4GlcNAc beta 1----3]n) carries a number of markers preferentially expressed in early embryonic cells. These markers are of practical value in analyzing embryogenesis and cell differentiation. For example, in order to monitor in vitro differentiation of multipotential embryonal carcinoma cells, stage-specific embryonic antigen-1 (SSEA-1) and the Lotus agglutinin receptor have been used as markers of the undifferentiated cells, and the Dolichos agglutinin receptor has been used as a marker of extraembryonic endoderm cells. Developmental control of cell surface carbohydrates is attained by controlled expression of activities of key glycosyltransferases; for example, the activity of N-acetylglucosaminide alpha 1----3 fucosyltransferase is lost during in vitro differentiation of embryonal carcinoma cells to parietal endoderm cells, in parallel to the disappearance of SSEA-1. Accumulating evidence suggests that poly-N-acetyllactosamine-type glycans that are abundant in early embryonic cells are involved in cell surface recognition of these cells.  相似文献   

9.
Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, α chain) ,and CDlla (LFA-1, α chain) on mouse oocytes, and pre- and peri-implantation stage embryos was exam-ined by quantitative indirect immunoliuorescence microscopy. ICAM-1 was most strongly expressed at the oocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM,also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On the other hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at the compacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophecto-derm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remained significantly expressed throughout and after blastocyst hatching was expressed on the polar trophecto-derm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression of both VCAM-1 and CDlla was undetectable throughout. The diametrical temporal expression pattern of ICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesion molecules may be important for interaction of the embryo with the maternal cellular environment as well as for continuing development and survival of the early embryo.  相似文献   

10.
Lu DP  Tian L  O'Neill C  King NJ 《Cell research》2002,12(5-6):373-383
Expression of the adhesion molecules, ICAM-1, VCAM-1, NCAM, CD44, CD49d (VLA-4, alpha chain), and CD11a (LFA-1, alpha chain) on mouse oocytes, and pre- and peri-implantation stage embryos was examined by quantitative indirect immunofluorescence microscopy. ICAM-1 was most strongly expressed at the oocyte stage, gradually declining almost to undetectable levels by the expanded blastocyst stage. NCAM, also expressed maximally on the oocyte, declined to undetectable levels beyond the morula stage. On the other hand, CD44 declined from highest expression at the oocyte stage to show a second maximum at the compacted 8-cell/morula. This molecule exhibited high expression around contact areas between trophectoderm and zona pellucida during blastocyst hatching. CD49d was highly expressed in the oocyte, remained significantly expressed throughout and after blastocyst hatching was expressed on the polar trophectoderm. Like CD44, CD49d declined to undetectable levels at the blastocyst outgrowth stage. Expression of both VCAM-1 and CD11a was undetectable throughout. The diametrical temporal expression pattern of ICAM-1 and NCAM compared to CD44 and CD49d suggest that dynamic changes in expression of adhesion molecules may be important for interaction of the embryo with the maternal cellular environment as well as for continuing development and survival of the early embryo.  相似文献   

11.
Akama R  Sato Y  Kariya Y  Isaji T  Fukuda T  Lu L  Taniguchi N  Ozawa M  Gu J 《Proteomics》2008,8(16):3221-3228
Recently, our research group investigated the effects of cell-cell interactions on N-linked oligosaccharides (N-glycans). We found that N-acetylglucosaminyltransferase III (GnT-III) activity, and thus, the enzyme product-bisected N-glycans were induced in cells cultured under dense condition in an E-cadherin-dependent manner. To further explore the underlying molecular mechanism, we examined the effects of alpha-catenin, which is a component of the E-cadherin-catenin complex that can bind to actin cytoskeleton, on the regulation of GnT-III expression in the human colon carcinoma DLD-1 cells. GnT-III activity was not substantially increased in cells cultured under dense conditions, compared with those cultured under sparse conditions. However, restoration of alpha-catenin gene to DLD-1 cells resulted in a significant increase in GnT-III activity and in production of the bisected N-glycans, which were detected by E(4)-PHA, suggesting that the E-cadherin-catenin complex is required for the induction. Moreover, treatment with cytochalasin D, an inhibitor of F-actin polymerization, completely blocked the upregulation of GnT-III expression in the dense culture. Taken together, these results strongly suggest that GnT-III expression is tightly regulated by cell-cell adhesion via the E-cadherin-catenin complex and actin cytoskeleton formation.  相似文献   

12.
We have analysed the expression during mid-gestation mouse development of the four member LRRTM gene family which encodes type 1 transmembrane proteins containing 10 extracellular leucine rich repeats and a short intracellular tail. Each family member has a developmentally regulated pattern of expression distinct from all other members. LRRTM1 is expressed in the neural tube, otic vesicle, apical ectodermal ridge, forebrain and midbrain up to a sharp central boundary. LRRTM2 is expressed in a subset of progenitors in the neural tube. LRRTM3 is expressed in a half somite wide stripe in the presomitic mesoderm adjacent to the boundary with the most recently formed somite. Additional expression is seen in the neural tube, forebrain and hindbrain. LRRTM4 is expressed in the limb mesenchyme, neural tube, caudal mesoderm and in three distinct regions of the head. Later expression occurs in a subset of the developing sclerotome. Each family member has a unique expression domain within the neural tube.  相似文献   

13.
We have isolated a yolk glycoprotein complex from eggs and early embryos of the sea urchin, Strongylocentrotus purpuratus. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of these complexes and peptide mapping of their individual glycoprotein components indicate that developmental stage-specific changes in molecular composition of the complex are due to proteolytic processing events. Our data revealed that a 180 kDa glycoprotein of the egg complex is separated by a single proteolytic cleavage into intermediate glycoproteins of 115 and 76 kDa early in development. By the hatched blastula stage, each of these intermediate glycoproteins has been further processed to lower molecular weight forms: the 115 kDa protein is proteolytically clipped to a 84 kDa form, perhaps through 110 and 105 kDa intermediaries, while the 76 kDa molecule is directly processed to a 65 kDa form.  相似文献   

14.
15.
ATP-gated non-selective cation channels assembled from P2X3 receptor subunits contribute to transduction and neurotransmitter signaling in peripheral sensory systems and also feature prominently in the development of the central nervous system. In this study, P2X3 receptor expression was characterized in the mouse cochlea from embryonic day 18 (E18) using confocal immunofluorescence. From E18 to P6, spiral ganglion neuron cell bodies and peripheral neurites projecting to the inner and outer hair cells were labeled. The inner spiral plexus associated with the inner hair cell synapses had a stronger fluorescence signal than outer spiral bundle fibers which provide the afferent innervation to the outer hair cells. Labeling in the cell bodies and peripheral neurites diminished around P6, and was no longer detected after the onset of hearing (P11, P17, adult). In opposition to the axiom that P2X3 expression is neuron-specific, inner and outer sensory hair cells were labeled in the base and mid turn region at E18, but at P3 only the outer hair cells in the most apical region of the cochlea continued to express the protein. These data suggest a role for P2X3 receptor-mediated purinergic signaling in cochlear synaptic reorganization, and establishment of neurotransmission, which occurs just prior to the onset of hearing function.  相似文献   

16.
17.
18.
Integrin signaling modulates trophoblast adhesion to extracellular matrices during blastocyst implantation. Fibronectin (FN)-binding activity on the apical surface of trophoblast cells is strengthened after elevation of intracellular Ca(2+) downstream of integrin ligation by FN. We report here that phosphoinositide-specific phospholipase C (PLC) mediates Ca(2+) signaling in response to FN. Pharmacological agents used to antagonize PLC (U73122) or the inositol phosphate receptor (Xestospongin C) inhibited FN-induced elevation of intracellular Ca(2+) and prevented the upregulation of FN-binding activity. In contrast, inhibitors of Ca(2+) influx through either voltage-gated or non-voltage-gated Ca(2+) channels were without effect. Inhibition of protein tyrosine kinase activity by genistein, but not G-protein inhibition by suramin, blocked FN-induced intracellular Ca(2+) signaling and upregulation of adhesion, consistent with involvement of PLC-gamma. Confocal immunofluorescence imaging of peri-implantation blastocysts demonstrated that PLC-gamma2, but not PLC-gamma1 nor PLC-beta1, accumulated near the outer surface of the embryo. Phosphotyrosine site-directed antibodies revealed phosphorylation of PLC-gamma2, but not PLC-gamma1, upon integrin ligation by FN. These data suggest that integrin-mediated activation of PLC-gamma to initiate phosphoinositide signaling and intracellular Ca(2+) mobilization is required for blastocyst adhesion to FN. Signaling cascades regulating PLC-gamma could, therefore, control a critical feature of trophoblast differentiation during peri-implantation development.  相似文献   

19.
Integrins are a superfamily of alpha beta heterodimers, most of which serve as cell surface receptors for extracellular matrix proteins. In this report, we demonstrate that the recently described alpha 6 beta 4 integrin, previously thought to be limited to epithelial cells and Schwann cells, is expressed on immature mouse thymocytes. The presence of alpha 6 beta 4 is controlled by regulation of beta 4 expression, because alpha 6 was expressed by virtually all cells examined, paired with the beta 1 integrin chain to form VLA-6. During fetal ontogeny, beta 4 was highly expressed by 35% of day-13 thymocytes, 75% of day-14 to -15 thymocytes, then rapidly declined to low levels by birth. In neonates and adults, beta 4 expression was highest on CD4- CD8- CD3- and TCR(+)-gamma delta subsets. Correlation of IL-2R, CD44 and beta 4 on CD4- CD8- thymocytes revealed maximal levels on the intermediate CD44- IL-2R+ subset. Most CD4- CD8+ TCR- thymocytes and a significant fraction of CD4+ CD8+ thymocytes were beta 4lo, whereas the most mature J11d- single positive thymocytes were beta-4. Overall, down-regulation of beta 4 was associated with up-regulation of CD4, CD8, and CD3 in the thymus. alpha 6 beta 4 was undetectable on fetal liver or bone marrow cells, lymphocytes from lymph node, spleen, or blood, and mitogen-activated splenic T cells cultured up to 10 wk with IL-2. The data suggest that alpha 6 beta 4 is up-regulated after pro-T cells enter the thymus and may have a thymus-specific function for T cells. The developmentally regulated pattern of expression and the prominence of alpha 6 beta 4 on day-13 to -16 fetal and adult CD4- CD8- CD3- thymocytes further suggest this unusual integrin may play a role in early T cell development, including stages before acquisition of the TCR.  相似文献   

20.
By immunofluorescence analyses, we have determined that Type III procollagen, Type III collagen, and B and C chains of basement membrane collagen are associated with preimplantation mouse embryos. Type III collagen and procollagen appear to be associated with embryos at the 4-cell stage and beyond, whereas antibodies to B and C collagen chains bind to 2-cell and later embryos. All of these collagen types are detected in increasing amounts as embryos develop in a defined medium, indicating that the embryo is capable of their synthesis. By the blastocyst stage, the collagens are primarily localized intercellularly. Cells of the inner cell mass (ICM) also bind collagen antibodies. When isolated ICMs become two-layered, both the inner presumptive ectoderm layer and the outer primitive endoderm layer react with antibodies to Type III collagen and procollagen. The endoderm cells also react avidly with antibodies to B- and C-chain collagens. Preimplantation embryos and ICMs fail to react with antibodies to Types I and II collagen. During peri-implantation stages, blastocysts continue to react with antibodies to Type III and basement membrane collagens. There is no obvious relationship between the intensity of immunofluorescence and the change in the blastocyst surface from nonadhesive to adhesive. Furthermore, blastocysts prevented from undergoing implantation-related events in utero and in vitro react extensively with collagen antibodies. Blastocyst surface collagens might, nevertheless, play a role in implantation by undergoing organizational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号