首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Comparative localization of three classes of cell wall proteins.   总被引:15,自引:1,他引:14  
The localization of the cell wall proline-rich proteins (PRPs), and the gene expression of the cell wall glycine-rich proteins (GRPs) and the hydroxyproline-rich glycoproteins (HRGPs) were examined in several dicot species. The PRPs are accumulated in the corner walls of the cortex where several cells are joined together and in the protoxylem cell walls of 3-day-old soybean root. In 1-month-old soybean plants, the PRPs are specifically deposited in xylem vessel elements of the young stem, and they are accumulated in both phloem fibers and xylem vessel elements and fibers of the older stem. Likewise, the PRPs are localized in xylem vessel elements and fibers in tomato, petunia, potato and tobacco stems. They are also found in outer and inner phloem fiber cell walls of tomato stem and in outer phloem fiber cell walls of petunia stem. The gene expression of the HRGPs and the GRPs is developmentally regulated in tomato, petunia and tobacco stems. HRGP mRNAs are abundant in outer and inner phloem regions, while GRP mRNAs are present mostly in primary xylem and in the cambium region. Immunocytochemical localization showed that the GRPs have a localization pattern similar to that of the PRPs in tomato, petunia and tobacco stems.  相似文献   

2.
An alternative methylation pathway in lignin biosynthesis in Zinnia.   总被引:17,自引:1,他引:16       下载免费PDF全文
Z H Ye  R E Kneusel  U Matern    J E Varner 《The Plant cell》1994,6(10):1427-1439
S-Adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is implicated in disease resistant response, but whether it is involved in lignin biosynthesis is not known. We isolated a cDNA clone for CCoAOMT in differentiating tracheary elements (TEs) induced from Zinnia-isolated mesophyll cells. RNA gel blot analysis showed that the expression of the CCoAOMT gene was markedly induced during TE differentiation from the isolated mesophyll cells. Tissue print hybridization showed that the expression of the CCoAOMT gene is temporally and spatially regulated and that it is associated with lignification in xylem and in phloem fibers in Zinnia organs. Both CCoAOMT and caffeic acid O-methyltransferase (COMT) activities increased when the isolated Zinnia mesophyll cells were cultured, whereas only CCoAOMT activity was markedly enhanced during lignification in the in vitro-differentiating TEs. The induction pattern of the OMT activity using 5-hydroxyferuloyl CoA as substrate during lignification was the same as that using caffeoyl CoA. Taken together, the results indicate that CCoAOMT is associated with lignification during xylogenesis both in vitro and in the plant, whereas COMT is only involved in a stress response in vitro. We propose that CCoAOMT is involved in an alternative methylation pathway in lignin biosynthesis. In Zinnia in vitro-differentiating TEs, the CCoAOMT mediated methylation pathway is dominant.  相似文献   

3.
Abstract: Caffeate and caffeoyl-CoA O-methyltransferases (COMTs and CCoAOMTs) catalyze the formation of ferulic acid and feruloyl-CoA, respectively, in many plants, and their physiological significance is under investigation. CCoAOMT was proposed to play a pivotal role in cell wall reinforcement during the induced disease resistance response, as exemplified in elici-tor-treated parsley cells, as well as in the formation of guaiacyl-and syringyl-type lignins. This requires selective substrate and tissue specificities. Parsley CCoAOMT expressed in E. coli methylated caffeoyl- or 5-hydroxyferuloyl-CoA to feruloyl- and sinap-oyl-CoA, whereas neither caffeate nor 5-hydroxyferulate was accepted. Tissue print hybridizations of parsley stem and root sections revealed, furthermore, that CCoAOMT mRNA is consti-tutively associated with the vascular tissues, but is also expressed in the surface cell layers upon wounding. In order to study the promoter activity of the parsley CCoAOMT gene, tobacco plantlets were transformed with parsley CCoAOMT promoter-GUS reporter gene constructs; these transformants, at the very young stage, expressed GUS activity in a narrow subapical root zone only extending later to the vascular tissue at the onset of xylem differentiation. GUS activity of the mature transgenic tobacco plants was observed exclusively in the parenchyma lining the differentiated xylem elements and xylem ray cells of root, stem or leaf tissues. Thus, parsley CCoAOMT is a bifunctional enzyme which appears to serve in both stress compensation and lignification. This was supported by the ontogenetic activity profile of tobacco endogeneous CCoAOMT, which correlated closely with the GUS expression under the control of parsley CCoAOMT promoter, while the proportion of CCoAOMT vs. COMT activities varied substantially during growth of the transgenic tobacco plants.  相似文献   

4.
Gao M  Showalter AM 《Planta》2000,210(6):865-874
 Arabinogalactan-proteins (AGPs) are highly glycosylated cell surface proteins that are thought to function in plant growth and development. The developmentally regulated expression of LeAGP-1, a novel and major AGP in tomato, was examined in different organs and tissues of tomato (Lycopersicon esculentum Mill. cv. UC82B) plants with an anti-peptide antibody (i.e. the PAP antibody) directed specifically against the lysine-rich subdomain of the LeAGP-1 core protein. During cell differentiation in tomato plants, LeAGP-1 was associated with cell wall thickening and lignification of particular cell types. Specifically, LeAGP-1 was detected in secondary wall thickenings of maturing metaxylem and secondary xylem tracheary elements in roots and stems, and in thickened cell walls of phloem sieve elements. However, LeAGP-1 was also present in thin-walled, cortical parenchyma cells of seedling roots as well as thick-walled collenchyma cells in young stems, both of which are not lignified. Based on these observed patterns, possible roles for LeAGP-1 in plant growth and development are discussed. Received: 17 August 1999 / Accepted: 7 October 1999  相似文献   

5.
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.  相似文献   

6.
杨树新梢积累营养贮藏蛋白质的细胞学研究   总被引:9,自引:0,他引:9  
采用光学显微镜和电子显微镜技术,对杨树新梢中的营养贮藏蛋白质进行了细胞学鉴定。在用戊二醛固定的标本中,营养贮藏蛋白质呈颗粒状,积累在中央大液泡里。在新梢伸长生长时期,新梢茎的基部已积累了营养贮藏蛋白质,在伸长生长刚停止,中上部的叶片近成熟时,整个新梢的茎都有营养贮藏蛋白质的积累,其中,以新梢基部的茎最为丰富。营养贮藏蛋白质优先在次生韧皮部的韧皮薄壁细胞和韧皮射线薄壁细胞中积累,在新梢伸长生长停止后,新梢基部茎的木质部中也积累了相当数量的营养贮藏蛋白质,主要分布在初生木质部和内侧次生木质部的各种生活的薄壁细胞中。新梢较早地积累营养贮藏蛋白质是热带树木和温带树木的一个共同特点,对于树木的氮代谢和树木当年的生长发育可能具有重要的调控作用。  相似文献   

7.
 It has previously been shown (D.R. Gang et al., 1999, J Biol Chem 274: 7516–7527) that the most abundant protein in the secondary xylem of poplar (Populus trichocarpa cv. `Trichobel') is a phenylcoumaran benzylic ether reductase (PCBER), an enzyme involved in lignan synthesis. Here, the distribution and abundance of PCBER in poplar was studied at both the RNA and protein level. The cellular expression pattern was determined by immunolocalization of greenhouse-grown plants as well as of a field-grown poplar. Compared to other poplar tissues, PCBER is preferentially produced in the secondary xylem of stems and roots and is associated with the active growth period. The protein is present in all cells of the young differentiating xylem, corresponding to the zone of active phenylpropanoid metabolism and lignification. In addition, PCBER is located in young differentiating phloem fibers, in xylem ray parenchyma, and in xylem parenchyma cells at the growth-ring border. Essentially the same expression pattern was observed in poplars grown in greenhouses and in the field. The synthesis of PCBER in phenylpropanoid-synthesizing tissues was confirmed in a bending experiment. Induction of PCBER was observed in the pith of mechanically bent poplar stems, where phenylpropanoid metabolism is induced. These results indicate that the products of PCBER activity are synthesized mainly in lignifying tissues, suggesting a role in wood development. Received: 28 September 1999 / Accepted: 15 March 2000  相似文献   

8.
A putative promoter fragment of a Pinus radiata gene encoding a multi-functional O-methyltransferase (AEOMT) was isolated from genomic DNA. Sequence analysis revealed a number of putative cis elements, including AC-rich motifs common in promoters of genes related to the phenylpropanoid pathway. The isolated promoter was fused to the GUS reporter gene and its expression profile analyzed in transgenic tobacco and in transient transformation experiments with P. radiata embryogenic and xylogenic tissue. The promoter conferred weak expression in embryogenic tissue but caused strong GUS activity in both ray parenchyma cells and developing tracheary elements of xylem strips. Histochemical analysis in transgenic tobacco plants revealed that the AEOMT promoter induced GUS expression in cell types associated with lignification, such as developing vessels, phloem and wood fibers and xylem parenchyma as well as in non-lignifying phloem parenchyma. The isolated promoter was activated by challenge of the tissue with a fungal pathogen. Our results also indicate that the control of lignin-related gene expression is conserved and can be compared in evolutionarily distant species such as tobacco and pine.  相似文献   

9.
Small pieces of different tissues from stems of young and oldcarnation plants were analyzed for lignification (lignin/celluloseratios) and lignin composition by means of pyrolysis-(gas chromatography)-massspectrometry. The epidermis and phloem of young and old stemswere essentially non-lignified. Pith parenchyma was only lignifiedin mature and senescing tissues. The type of lignin in sclerenchymadiffered from that in xylem and pith. Lignification in the xylemof very young tissues was a mainly guaiacyl-type lignin, whichgradually changed into a mixed guaiacyl-syringyl lignin in oldertissues. In mature tissues, the sclerenchyma was more highlylignified than the xylem. All tissues yielded comparatively large amounts of dihydroferulicacid, a compound which may be specific for carnation. Carnation, Dianthus caryophyllus, epidermis, cortex, sclerenchyma, phloem, xylem, pith, lignification, aging, dihydroferulic acid, pyrolysis-(gas chromatography)-mass spectrometry  相似文献   

10.
11.
Alfalfa Stem Tissues: Cell-wall Development and Lignification   总被引:4,自引:0,他引:4  
Alfalfa stems contain a variety of tissues with different patternsof cell-wall development. Development of alfalfa cell wallswas investigated after histochemical staining and with polarizedlight using light microscopy and scanning electron microscopy.Samples of the seventh internode, from the base of stems grownon cut stems, were harvested at five defined stages of developmentfrom early internode elongation through to late maturity. Internodeseven was elongating up to the third sample harvest and internodediameter increased throughout the entire sampling period. Chlorenchyma,cambium, secondary phloem, primary xylem parenchyma and pithparenchyma stem tissues all had thin primary cell walls. Pithparenchyma underwent a small amount of cell-wall thickeningand lignification during maturation. Collenchyma and primaryphloem tissues developed partially thickened primary walls.In contrast to a recent report, the formation of a ring shaped,lignified portion of the primary wall in a number of cells inthe exterior part of the primary phloem was found to precedethe deposition of a thick, non-lignified secondary wall whichwas degradable by rumen microbes. In numerous xylem fibres fromthe fourth harvest date onwards, an additional highly degradablesecondary wall layer was deposited against a previously depositedlignified and undegradable secondary wall. The pattern of lignificationobserved in alfalfa stem tissues suggests that polymerizationof monolignols by peroxidases at the luminal border of the primarycell wall creates an impermeable zone which restricts lignificationof the middle lamella region of tissues with thick primary walls.Copyright1998 Annals of Botany Company Alfalfa,Medicago sativaL., stem tissue, cell wall, development, lignification, degradation.  相似文献   

12.
13.
14.
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.  相似文献   

15.
Cinnamyl alcohol dehydrogenase 2 (CAD 2) localization and the cell-specific activity of the eucalyptus CAD 2 promoter were investigated by CAD 2 immunogold localization and promoter β-glucuronidase (GUS) histochemistry in apical and mature parts of stable transformed poplar (Populus tremula × P. alba) stems. Both CAD 2 protein and GUS activity were found to be confined in the same types of cells in the shoot apices, particularly in the determined meristematic cells in leaf axils and shell zones, procambium and developing tracheids. Within mature stems, CAD 2 and GUS were also identified in cambium and in fully or partially lignified cells derived from it (young xylem, developing phloem fibres, chambered parenchyma cells around phloem). Additionally, GUS activity was found in the scale leaves of apical shoot buds and in the roots (namely in the procambium, cambium, phellogen, young xylem, pericycle) of transformed plants. By employing immunogold cytochemistry, CAD 2 was shown to be localized in the cytoplasm within cambial, ray and young xylem cells in stems, the gold particles being randomly attached to endoplasmic reticulum and Golgi-derived vesicles. These results support a crucial role for CAD 2 in lignification and indicate a new role for this enzyme in branching events within the shoot apex and during lateral root formation. Received: 24 April 1997 / Accepted: 17 July 1997  相似文献   

16.
Cell wall hydroxyproline-rich glycoproteins (HRGPs) and glycine-rich proteins (GRPs) were examined at the protein and at the mRNA levels in developing soybean tissues by tissue print immunoblots and RNA blots. In young soybean stems, HRGPs are expressed most heavily in cambium cells, in a few layers of cortex cells surrounding primary phloem, and in some parenchyma cells around the primary xylem, whereas GRPs are highly expressed in the primary xylem and also in the primary phloem. In older soybean stems, HRGP genes are expressed exclusively in cambium cells and GRP genes are most heavily expressed in newly differentiated secondary xylem cells. Similar expression patterns of HRGPs and of GRPs were found in soybean petioles, seedcoats, and young hypocotyls, and also in bean petioles and stems. HRGPs and GRPs become insolubilized in soybean stem cell walls. Three major HRGP mRNAs and two major GRP mRNAs accumulate in soybean stems. Soluble HRGPs are abundant in young hypocotyl apical regions and young root apical regions, whereas in hypocotyl and root mature regions, soluble HRGPs are found only in a few layers of cortex cells surrounding the vascular bundles. GRPs are specifically localized in primary xylem cell walls of young root. These results show that the gene expression of HRGPs and GRPs is developmentally regulated in a tissue-specific manner. In soybean tissues, HRGPs are most heavily expressed in meristematic cells and in some of those cells that may be under stress, whereas GRPs are expressed in all cells that are or are going to be lignified.  相似文献   

17.
Leaf sucrose (Suc) transporters are essential for phloem loading and long-distance partitioning of assimilates in plants that load their phloem from the apoplast. Suc loading into the phloem is indispensable for the generation of the osmotic potential difference that drives phloem bulk flow and is central for the long-distance movement of phloem sap compounds, including hormones and signaling molecules. In previous analyses, solanaceous SUT1 Suc transporters from tobacco (Nicotiana tabacum), potato (Solanum tuberosum), and tomato (Solanum lycopersicum) were immunolocalized in plasma membranes of enucleate sieve elements. Here, we present data that identify solanaceous SUT1 proteins with high specificity in phloem companion cells. Moreover, comparisons of SUT1 localization in the abaxial and adaxial phloem revealed higher levels of SUT1 protein in the abaxial phloem of all three solanaceous species, suggesting different physiological roles for these two types of phloem. Finally, SUT1 proteins were identified in files of xylem parenchyma cells, mainly in the bicollateral veins. Together, our data provide new insight into the role of SUT1 proteins in solanaceous species.  相似文献   

18.
Narváez-Vásquez J  Ryan CA 《Planta》2004,218(3):360-369
The systemin precursor, prosystemin, has been previously shown to be sequestered in vascular bundles of tomato (Lycopersicon esculentum Mill.) plants, but its subcellular compartmentalization and association with a specific cell type has not been established. We present in situ hybridization and immunocytochemical evidence at the light, confocal, and transmission electron microscopy levels that wound-induced and methyl jasmonate-induced prosystemin mRNA and protein are exclusively found in vascular phloem parenchyma cells of minor veins and midribs of leaves, and in the bicollateral phloem bundles of petioles and stems of tomato. Prosystemin protein was also found constitutively in parenchyma cells of various floral organs, including sepals, petals and anthers. At the subcellular level, prosystemin was found compartmentalized in the cytosol and the nucleus of vascular parenchyma cells. The cumulative data indicate that vascular phloem parenchyma cells are the sites for the synthesis and processing of prosystemin as a first line of defense signaling in response to herbivore and pathogen attacks.Abbreviations IgG immunoglobulin - TEM transmission electron microscope  相似文献   

19.
We used dedicated magnetic resonance imaging (MRI) equipment and methods to study phloem and xylem transport in large potted plants. Quantitative flow profiles were obtained on a per-pixel basis, giving parameter maps of velocity, flow-conducting area and volume flow (flux). The diurnal xylem and phloem flow dynamics in poplar, castor bean, tomato and tobacco were compared. In poplar, clear diurnal differences in phloem flow profile were found, but phloem flux remained constant. In tomato, only small diurnal differences in flow profile were observed. In castor bean and tobacco, phloem flow remained unchanged. In all plants, xylem flow profiles showed large diurnal variation. Decreases in xylem flux were accompanied by a decrease in velocity and flow-conducting area. The diurnal changes in flow-conducting area of phloem and xylem could not be explained by pressure-dependent elastic changes in conduit diameter. The phloem to xylem flux ratio reflects what fraction of xylem water is used for phloem transport (Münch's counterflow). This ratio was large at night for poplar (0.19), castor bean (0.37) and tobacco (0.55), but low in tomato (0.04). The differences in phloem flow velocity between the four species, as well as within a diurnal cycle, were remarkably small (0.25-0.40 mm s(-1)). We hypothesize that upper and lower bounds for phloem flow velocity may exist: when phloem flow velocity is too high, parietal organelles may be stripped away from sieve tube walls; when sap flow is too slow or is highly variable, phloem-borne signalling could become unpredictable.  相似文献   

20.
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号