首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional characteristics of group II chaperonins, especially those from archaea, have not been elucidated extensively. Here, we performed a detailed functional characterization of recombinant chaperonin alpha subunits (16-mer) (Ta-cpn alpha) from the thermophilic archaea Thermoplasma acidophilum as a model protein of archaeal group II chaperonins. Recombinant Ta-cpn alpha formed an oligomeric ring structure similar to that of native protein, and displayed an ATP hydrolysis activity (optimal temperature: 60 degrees C) in the presence of either magnesium, manganese or cobalt ions. Ta-cpn alpha was able to bind refolding intermediates of Thermus MDH and GFP in the absence of ATP, and to promote the refolding of Thermus MDH at 50 degrees C in the presence of Mg2+-, Mn2+-, or Co2+-ATP. Ta-cpn alpha also prevented thermal aggregation of rhodanese and luciferase at 50 degrees C. Interestingly, Ta-cpn alpha in the presence of Mn2+ ion showed an increased hydrophobicity, which correlated with an increased efficiency in substrate protein binding. Our finding that Ta-cpn alpha chaperonin system displays folding assistance ability with ATP-dependent substrate release may provide a detailed look at the potential functional capabilities of archaeal chaperonins.  相似文献   

2.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

3.
In vitro refolding of the urea-unfolded, monomeric, mitochondrial enzyme rhodanese (thiosulfate sulfur-transferase; EC 2.8.1.1) is facilitated by the chaperonin proteins cpn60 and cpn10 from Escherichia coli at 37 degrees C, but the refolding is strongly inhibited at 10 degrees C. In contrast, the unassisted refolding of rhodanese is efficient at 10 degrees C, but the refolding efficiency decreases as the temperature is raised. These observations provided two measures of the cpn60-rhodanese complex. Thus, we monitored either 1) the cpn60-dependent inhibition of spontaneous folding at 10 degrees C or 2) the recovery of active rhodanese in the complete chaperonin system at 25 degrees C, after first forming a cpn60-rhodanese complex at 10 degrees C. These procedures minimized the aggregation of interactive folding intermediates that tend to overestimate the apparent number of cpn60 14-mers in determining the stoichiometry of protein-cpn60 14-mer interactions. Both procedures used here gave results that were consistent with there being 1 rhodanese binding site/cpn60 tetradecamer. This stoichiometry is significantly less than might be expected from the fact that cpn60 is composed of 14 identical subunits, and it may indicate that rhodanese interacts with a restricted region that is formed when the cpn60 tetradecamer is assembled. The ability to stabilize chaperonin-protein complexes that can subsequently be reactivated will aid studies of the mode of action of the ubiquitous chaperonin proteins.  相似文献   

4.
Mendoza JA  Dulin P  Warren T 《Cryobiology》2000,41(4):319-323
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised.  相似文献   

5.
Unassisted refolding of urea unfolded rhodanese   总被引:4,自引:0,他引:4  
In vitro refolding after urea unfolding of the enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) normally requires the assistance of detergents or chaperonin proteins. No efficient, unassisted, reversible unfolding/folding transition has been demonstrated to date. The detergents or the chaperonin proteins have been proposed to stabilize folding intermediates that kinetically limit folding by aggregating. Based on this hypothesis, we have investigated a number of experimental conditions and have developed a protocol for refolding, without assistants, that gives evidence of a reversible unfolding transition and leads to greater than 80% recovery of native enzyme. In addition to low protein concentration (10 micrograms/ml), low temperatures are required to maximize refolding. Otherwise optimal conditions give less than 10% refolding at 37 degrees C, whereas at 10 degrees C the recovery approaches 80%. The unfolding/refolding phases of the transition curves are most similar in the region of the transition, and refolding yields are significantly reduced when unfolded rhodanese is diluted to low urea concentrations, rather than to concentrations near the transition region. This is consistent with the formation of "sticky" intermediates that can remain soluble close to the transition region. Apparently, nonnative structures, e.g. aggregates, can form rapidly at low denaturant concentrations, and their subsequent conversion to the native structure is slow.  相似文献   

6.
Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.  相似文献   

7.
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL-rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.  相似文献   

8.
Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.  相似文献   

9.
Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring.   总被引:20,自引:0,他引:20  
Chaperonins are thought to participate in the process of protein folding in bacteria and in eukaryotic mitochondria and chloroplasts. While some chaperonins are relatively well characterized, the structures of the mammalian chaperonins are unknown. We have expressed a mammalian mitochondrial chaperonin 60 in Escherichia coli and purified the recombinant protein to homogeneity. Structural and biochemical analyses of this protein establish a single toroidal structure of seven subunits, in contrast to the homologous bacterial, fungal, and plant chaperonin 60s, which have double toroidal structures comprising two layers of seven identical subjects each. The recombinant mammalian chaperonin 60, together with the mammalian chaperonin 10 (but not with bacterial chaperonin 10), facilitates the formation of catalytically active ribulose-bisphosphate carboxylase from an unfolded state in the presence of K+ and MgATP. Analysis of the partial reactions involved in this in vitro reconstitution reveals that the single toroid of chaperonin 60 can form stable complexes with both unfolded or partially folded [35S]ribulose-bisphosphate carboxylase and mitochondrial (but not bacterial) chaperonin 10 in the presence of MgATP. We conclude that the minimal functional unit of chaperonin 60 is a single hepatmeric toroid.  相似文献   

10.
Chaperonins assist in the folding of nascent and misfolded proteins, though the mechanism of folding within the lumen of the chaperonin remains poorly understood. The archeal chaperonin from Methanococcus marapaludis, Mm-Cpn, shares the eightfold double barrel structure with other group II chaperonins, including the eukaryotic TRiC/CCT, required for actin and tubulin folding. However, Mm-Cpn is composed of a single species subunit, similar to group I chaperonin GroEL, rather than the eight subunit species needed for TRiC/CCT. Features of the β-sheet fold have been identified as sites of recognition by group II chaperonins. The crystallins, the major components of the vertebrate eye lens, are β-sheet proteins with two homologous Greek key domains. During refolding in vitro a partially folded intermediate is populated, and partitions between productive folding and off-pathway aggregation. We report here that in the presence of physiological concentrations of ATP, Mm-Cpn suppressed the aggregation of HγD-Crys by binding the partially folded intermediate. The complex was sufficiently stable to permit recovery by size exclusion chromatography. In the presence of ATP, Mm-Cpn promoted the refolding of the HγD-Crys intermediates to the native state. The ability of Mm-Cpn to bind and refold a human β-sheet protein suggests that Mm-Cpn may be useful as a simplified model for the substrate recognition mechanism of TRiC/CCT.  相似文献   

11.
The in vitro folding of rhodanese involves a competition between formation of properly folded enzyme and off-pathway inactive species. Co-solvents like glycerol or low temperature, e.g. refolding at 10 degrees C, successfully retard the off-pathway formation of large inactive aggregates, but the process does not yield 100% active enzyme. These data suggest that mis-folded species are formed from early folding intermediates. GroEL can capture early folding intermediates, and it loses the ability to capture and reactivate rhodanese if the enzyme is allowed first to spontaneously fold for longer times before it is presented to GroEL, a process that leads to the formation of unproductive intermediates. In addition, GroEL cannot reverse large aggregates once they are formed, but it could capture some folding intermediates and activate them, even though they are not capable of forming active enzyme if left to spontaneous refolding. The interaction between GroEL and rhodanese substantially but not completely inhibits intra-protein inactivation, which is responsible for incomplete activation during unassisted refolding. Thus, GroEL not only decreases aggregation, but it gives the highest reactivation of any method of assistance. The results are interpreted using a previously suggested model based on studies of the spontaneous folding of rhodanese (Gorovits, B. M., McGee, W. A., and Horowitz, P. M. (1998) Biochim. Biophys. Acta 1382, 120--128 and Panda, M., Gorovits, B. M., and Horowitz, P. M. (2000) J. Biol. Chem. 275, 63--70).  相似文献   

12.
Mitochondrial chaperonins are necessary for the folding of newly imported and stress-denatured mitochondrial proteins. The goal of this study was to investigate the structure and function of the mammalian mitochondrial chaperonin system. We present evidence that the 60 kDa chaperonin (mt-cpn60) exists in solution in dynamic equilibrium between monomers, heptameric single rings and double-ringed tetradecamers. In the presence of ATP and the 10 kDa cochaperonin (mt-cpn10), the formation of a double ring is favored. ADP at very high concentrations does not inhibit malate dehydrogenase refolding or ATP hydrolysis by mt-cpn60 in the presence of mt-cpn10. We propose that the cis (mt-cpn60)14.nucleotide.(mt-cpn10)7 complex is not a stable species and does not bind ADP effectively at its trans binding site.  相似文献   

13.
S J Landry  L M Gierasch 《Biochemistry》1991,30(30):7359-7362
Chaperones facilitate folding and assembly of nascent polypeptides in vivo and prevent aggregation in refolding assays in vitro. A given chaperone acts on a number of different proteins. Thus, chaperones must recognize features present in incompletely folded polypeptide chains and not strictly dependent on primary structural information. We have used transferred nuclear Overhauser effects to demonstrate that the Escherichia coli chaperonin GroEL binds to a peptide corresponding to the N-terminal alpha-helix in rhodanese, a mitochondrial protein whose in vitro refolding is facilitated by addition of GroEL, GroES, and ATP. Furthermore, the peptide, which is unstructured when free in aqueous solution, adopts an alpha-helical conformation upon binding to GroEL. Modification of the peptide to reduce its intrinsic propensity to take up alpha-helical structure lowered its affinity for GroEL, but, nonetheless, it could be bound and took up a helical conformation when bound. We propose that GroEL interacts with sequences in an incompletely folded chain that have the potential to adopt an amphipathic alpha-helix and that the chaperonin binding site promotes formation of a helix.  相似文献   

14.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

15.
Compared to the group I chaperonins, such as Escherichia coli GroEL, which facilitate protein folding, many aspects of the functional mechanism of archaeal group II chaperonins are unclear. Sequence homology between the chaperonin from Pyrococcus furiosus (PfCPN) and other group II chaperonins, together with the homo-oligomeric nature of PfCPN, suggest that PfCPN may serve as a model to clarify the role of the homologous position Gly-345 in the chaperonin-mediated protein folding. Here, we show that the purified chaperonin mutant in which the conserved residue Gly-345 is replaced by Asp (G345D) displays only about 25% ATP/ADP hydrolysis activities of the wild-type in the presence of Co2+ and has a reduced capacity to promote folding of denatured malate dehydrogenase in vitro. This may be a reflection that Gly-345 plays an essential role in conformational change and protein refolding by archaeal group II chaperonins.  相似文献   

16.
Differential chemical modification ofE. coli chaperonin 60 (cpn60) was achieved by using one of several sulfhydryl-directed reagents. For native cpn60, the three cysteines were accessible for reaction with N-ethylmaleimide (NEM), while only two of them are accessible to the larger reagent 4,4′-dipyridyl disulfide (4-PDS). However, no sulfhydryl groups were modified when the even larger reagents 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) or 2-(4′-(iodoacetamido)anilino) naphthalene-6-sulfonic acid (IAANS), were employed, unless the chaperonin was unfolded. The cpn60 that had been covalently modified with NEM or IAANS, was not able to support the chaperonin-assisted refolding of the mitochondrial enzyme rhodanese, which also requires cpn10 and ATP hydrolysis. However, both modified forms of cpn60 were able to form binary complexes with rhodanese, as demonstrated by their ability to arrest the spontaneous refolding of the enzyme. That is, chemical modification with these sulfhydryl-directed reagents produced a species that was not prevented from interaction with partially folded rhodanese, but that was prevented from supporting a subsequent step(s) during the chaperonin-assisted refolding process.  相似文献   

17.
One of the most interesting facets of GroEL-facilitated protein folding lies in the fact that the requirement for a successful folding reaction of a given protein target depends upon the refolding conditions used. In this report, we utilize a mutant of GroEL (GroEL T89W) whose domain movements have been drastically restricted, producing a chaperonin that is incapable of utilizing the conventional cyclic mechanism of chaperonin action. This mutant was, however, still capable of improving the refolding yield of lactate dehydrogenase in the absence of both GroES and ATP hydrolysis. A very rapid interconversion of conformations was detected in the mutant immediately after ATP binding, and this interconversion was inferred to form part of the target release mechanism in this mutant. The possibility exists that some target proteins, although dependent on GroEL for improved refolding yields, are capable of refolding successfully by utilizing only portions of the entire mechanism provided by the chaperonins.  相似文献   

18.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   

19.
Protein folding by chaperonins is powered by ATP binding and hydrolysis. ATPase activity drives the folding machine through a series of conformational rearrangements, extensively described for the group I chaperonin GroEL from Escherichia coli but still poorly understood for the group II chaperonins. The latter--archaeal thermosome and eukaryotic TRiC/CCT--function independently of a GroES-like cochaperonin and are proposed to rely on protrusions of their own apical domains for opening and closure in an ATP-controlled fashion. Here we use small-angle neutron scattering to analyze structural changes of the recombinant alpha-only and the native alphabeta-thermosome from Thermoplasma acidophilum upon their ATPase cycling in solution. We show that specific high-salt conditions, but not the presence of MgATP alone, induce formation of higher order thermosome aggregates. The mechanism of the open-closed transition of the thermosome is strongly temperature-dependent. ATP binding to the chaperonin appears to be a two-step process: at lower temperatures an open state of the ATP-thermosome is predominant, whereas heating to physiological temperatures induces its switching to a closed state. Our data reveal an analogy between the ATPase cycles of the two groups of chaperonins and enable us to put forward a model of thermosome action.  相似文献   

20.
A chaperonin has been purified from a thermophilic bacterium, Thermus thermophilus. It consists of two kinds of proteins with approximate Mr 58,000 and 10,000 and shows a 7-fold rotational symmetry from the top view and a "football"-like shape from the side view under the electron microscopic view. Its weak ATPase activity is inhibited by sulfite and activated by bicarbonate. ATP causes change of its mobility in nondenaturating polyacrylamide gel electrophoresis. The T. thermophilus chaperonin can promote in vitro refolding of several guanidine HCl-denatured enzymes from thermophilic bacteria. At high temperatures above 60 degrees C, where the native enzymes are stable but their spontaneous refoldings upon dilution of guanidine HCl fail, the chaperonin induces productive refolding in an ATP-dependent manner. No or very poor refolding is induced when the chaperonin is added to the solution aged after dilution. An excess amount of the chaperonin is inhibitory for refolding. At middle temperatures (30-50 degrees C), where spontaneous refoldings of the enzymes occur, the chaperonin arrests refolding in the absence of ATP and refolding is induced when ATP is supplemented. At temperatures below 20 degrees C, where spontaneous refoldings also occur, the chaperonin arrests the refolding but ATP does not induce refolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号