首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most polluted sites contain mixed waste. This is especially true of the U.S. Department of Energy (DOE) waste sites which hold a complex mixture of heavy metals, radionuclides, and organic solvents. In such environments enzymes that can remediate multiple pollutants are advantageous. We report here evolution of an enzyme, ChrR6 (formerly referred to as Y6), which shows a markedly enhanced capacity for remediating two of the most serious and prevalent DOE contaminants, chromate and uranyl. ChrR6 is a soluble enzyme and reduces chromate and uranyl intracellularly. Thus, the reduced product is at least partially sequestered and nucleated, minimizing the chances of reoxidation. Only one amino acid change, (Tyr)128(Asn), was responsible for the observed improvement. We show here that ChrR6 makes Pseudomonas putida and Escherichia coli more efficient agents for bioremediation if the cellular permeability barrier to the metals is decreased.  相似文献   

2.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins—ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)—were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = ~2 × 104 M−1·s−1). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.  相似文献   

3.
The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.  相似文献   

4.
Environmental protection through biological mechanisms that aid in the reductive immobilization of toxic metals (e.g., chromate and uranyl) has been identified to involve specific NADH-dependent flavoproteins that promote cell viability. To understand the enzyme mechanisms responsible for metal reduction, the enzyme kinetics of a putative chromate reductase from Gluconacetobacter hansenii (Gh-ChrR) was measured and the crystal structure of the protein determined at 2.25 Å resolution. Gh-ChrR catalyzes the NADH-dependent reduction of chromate, ferricyanide, and uranyl anions under aerobic conditions. Kinetic measurements indicate that NADH acts as a substrate inhibitor; catalysis requires chromate binding prior to NADH association. The crystal structure of Gh-ChrR shows the protein is a homotetramer with one bound flavin mononucleotide (FMN) per subunit. A bound anion is visualized proximal to the FMN at the interface between adjacent subunits within a cationic pocket, which is positioned at an optimal distance for hydride transfer. Site-directed substitutions of residues proposed to involve in both NADH and metal anion binding (N85A or R101A) result in 90–95% reductions in enzyme efficiencies for NADH-dependent chromate reduction. In comparison site-directed substitution of a residue (S118A) participating in the coordination of FMN in the active site results in only modest (50%) reductions in catalytic efficiencies, consistent with the presence of a multitude of side chains that position the FMN in the active site. The proposed proximity relationships between metal anion binding site and enzyme cofactors is discussed in terms of rational design principles for the use of enzymes in chromate and uranyl bioremediation.  相似文献   

5.
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins--ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)-were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = approximately 2 x 10(4) M(-1) x s(-1)). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.  相似文献   

6.
7.
Chromate [Cr(VI)] is a serious environmental pollutant, which is amenable to bacterial bioremediation. NfsA, the major oxygen-insensitive nitroreductase of Escherichia coli, is a flavoprotein that is able to reduce chromate to less soluble and less toxic Cr(III). We show that this process involves single-electron transfer, giving rise to a flavin semiquinone form of NfsA and Cr(V) as intermediates, which redox cycle, generating more reactive oxygen species (ROS) than a divalent chromate reducer, YieF. However, NfsA generates less ROS than a known one-electron chromate reducer, lipoyl dehydrogenase (LpDH), suggesting that NfsA employs a mixture of uni- and di-valent electron transfer steps. The presence of YieF, ChrR (another chromate reductase we previously characterized), or NfsA in an LpDH-catalysed chromate reduction reaction decreased ROS generation by c. 65, 40, or 20%, respectively, suggesting that these enzymes can pre-empt ROS generation by LpDH. We previously showed that ChrR protects Pseudomonas putida against chromate toxicity; here we show that NfsA or YieF overproduction can also increase the tolerance of E. coli to this compound.  相似文献   

8.
Genetic engineering of radiation-resistant organisms to recover radionuclides/heavy metals from radioactive wastes is an attractive proposition. We have constructed a Deinococcus radiodurans strain harboring phoN, a gene encoding a nonspecific acid phosphatase, obtained from a local isolate of Salmonella enterica serovar Typhi. The recombinant strain expressed an ~27-kDa active PhoN protein and efficiently precipitated over 90% of the uranium from a 0.8 mM uranyl nitrate solution in 6 h. The engineered strain retained uranium bioprecipitation ability even after exposure to 6 kGy of 60Co gamma rays. The PhoN-expressing D. radiodurans offers an effective and eco-friendly in situ approach to biorecovery of uranium from dilute nuclear waste.  相似文献   

9.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   

10.
Chromium has been widely used in various industries. Hexavalent chromium (Cr6+) is a priority toxic, mutagenic and carcinogenic chemical, whereas its reduced trivalent form (Cr3+) is much less toxic and insoluble. Hence, the basic process for chromium detoxification is the transformation of Cr6+ to Cr3+. A number of aerobic and anaerobic microorganisms are capable of reducing Cr6+. In the presence of oxygen, microbial reduction of Cr6+ is commonly catalyzed by soluble enzymes, except in Pseudomonas maltophilia O-2 and Bacillus megaterium TKW3, which utilize membrane-associated reductases. Recently, two soluble Cr6+ reductases, ChrR and YieF, have been purified from Pseudomonas putida MK1 and Escherichia coli, respectively. ChrR catalyzes an initially one-electron shuttle followed by a two-electron transfer to Cr6+, with the formation of intermediate(s) Cr5+ and/or Cr4+ before further reduction to Cr3+. YieF displays a four-electron transfer that reduces Cr6+ directly to Cr3+. The membrane-associated Cr6+ reductase of B. megaterium TKW3 was isolated, but its reduction kinetics is as yet uncharacterized. Under anaerobic conditions, both soluble and membrane-associated enzymes of the electron transfer system were reported to mediate Cr6+ reduction as a fortuitous process coupled to the oxidation of an electron donor substrate. In this process, Cr6+ serves as the terminal electron acceptor of an electron transfer chain that frequently involves cytochromes (e.g., b and c). An expanding array of Cr6+ reductases allows the selection of enzymes with higher reductive activity, which genetic and/or protein engineering may further enhance their efficiencies. With the advancement in technology for enzyme immobilization, it is speculated that the direct application of Cr6+ reductases may be a promising approach for bioremediation of Cr6+ in a wide range of environments.  相似文献   

11.
Most bacteria contain soluble quinone-reducing flavoenzymes. However, no biological benefit for this activity has previously been demonstrated. ChrR of Pseudomonas putida is one such enzyme that has also been characterized as a chromate reductase; yet we propose that it is the quinone-reducing activity of ChrR that has the greatest biological significance. ChrR reduces quinones by simultaneous two-electron transfer, avoiding formation of highly reactive semiquinone intermediates and producing quinols that promote tolerance of H(2)O(2). Expression of chrR was induced by H(2)O(2), and levels of chrR expression in overexpressing, wild type, and knock-out mutant strains correlated with the H(2)O(2) tolerance and scavenging ability of each strain. The chrR expression level also correlated with intracellular H(2)O(2) levels as measured by protein carbonylation assays and fluorescence-activated cell scanning analysis with the H(2)O(2)-responsive dye H(2)DCFDA. Thus, enhancing the activity of ChrR in a chromate-remediating bacterial strain may not only increase the rate of chromate transformation, it may also augment the capacity of these cells to withstand the unavoidable production of H(2)O(2) that accompanies chromate reduction.  相似文献   

12.
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80°C and 5, respectively; and the Km was 374 μM, with a Vmax of 1.72 μmol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50°C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.  相似文献   

13.
Due to its exemplary resistance to ionising radiation, oxidative stress, desiccation and several DNA damaging agents, Deinococcus radiodurans R1 (DR1) is considered as one of the most appropriate candidates for the bioremediation of the nuclear waste sites. However, the high sensitivity of this bacterium to heavy metals, which are usually preponderant at nuclear waste dump sites, precludes its application for bioremediation. This study deals with the expression two metal binding peptides in DR1 as an attractive strategy for developing metal tolerance in this bacterium. A synthetic gene (EC20) encoding a phytochelatin analogue with twenty repeating units of glutamate and cysteine was constructed by overlap extension and expressed in DR1. The cyanobacterial metallothionein (MT) gene, smtA was cloned for intracellular expression in DR1. Both the genes were expressed under the native groESL promoter. DR1 strain carrying the recombinant EC20 demonstrated 2.5-fold higher tolerance to Cd2+ and accumulated 1.21-fold greater Cd2+ as opposed to the control while the heterologous expression of MT SmtA in DR1 imparted the transformant superior tolerance to Cd2+ amassing 2.5-fold greater Cd2+ than DR1 expressing EC20.  相似文献   

14.
Singlet oxygen (1O2) is the main agent of photooxidative stress and is generated by photosensitizers as (bacterio)chlorophylls. It leads to the damage of cellular macromolecules and therefore photosynthetic organisms have to mount an adaptive response to 1O2 formation. A major player of the photooxidative stress response in Rhodobacter sphaeroides is the alternative sigma factor RpoE, which is inactivated under non-stress conditions by its cognate anti-sigma factor ChrR. By using random mutagenesis we identified RSP_1090 to be required for full activation of the RpoE response under 1O2 stress, but not under organic peroxide stress. In this study we show that both RSP_1090 and RSP_1091 are required for full resistance towards 1O2. Moreover, we revealed that the DegS and RseP homologs RSP_3242 and RSP_2710 contribute to 1O2 resistance and promote ChrR proteolysis. The RpoE signaling pathway in R. sphaeroides is therefore highly similar to that of Escherichia coli, although very different anti-sigma factors control RpoE activity. Based on the acquired results, the current model for RpoE activation in response to 1O2 exposure in R. sphaeroides was extended.  相似文献   

15.
Some properties of a ficin-papain inhibitor from avian egg white   总被引:3,自引:0,他引:3  
A procedure has been established for the isolation, from sheep liver, of 6-phosphogluconate dehydrogenase which is homogeneous according to the criteria of the analytical ultracentrifuge, and isoelectric focusing. A systematic determination of the effects of pH, ionic strength, metal ions, and temperature, on the kinetic parameters of the isolated 6-phosphogluconate dehydrogenase has been carried out. Double-reciprocal plots of enzyme rate measurements as a function of substrate concentration indicate Km values of 15 μm for 6-phosphogluconate, and 7 μm for NADP+, under optimum assay conditions, and show no effect of the concentration of one substrate on the Km of the other substrate under the assay conditions employed. Ionic strength, monovalent and divalent metals, are apparently interchangeable in their ability to activate the enzyme, and act by decreasing the Km values of the enzyme, not by increasing the reaction rate. Concentrations of metals above the optimum are strongly inhibitory. Plots of ?log Km vs pH show inflection points at 8.3 for 6-phosphogluconate, and 6.5 for NADP+. At low substrate concentrations the pH optimum of the enzyme is at pH 7.7, but plots of V vs pH increase up to pH 9.1 (the enzyme is unstable at higher pH values). An Arrhenius plot shows a straight line between temperatures of 8.6 and 39.4 °C, and an energy of activation of 15,450 cal mole?1.  相似文献   

16.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

17.
Microbial bioreporters offer excellent potentialities for the detection of the bioavailable portion of pollutants in contaminated environments, which currently cannot be easily measured. This paper describes the construction and evaluation of two microbial bioreporters designed to detect the bioavailable chromate in contaminated water samples. The developed bioreporters are based on the expression of gfp under the control of the chr promoter and the chrB regulator gene of TnOtChr determinant from Ochrobactrum tritici 5bvl1. pCHRGFP1 Escherichia coli reporter proved to be specific and sensitive, with minimum detectable concentration of 100 nM chromate and did not react with other heavy metals or chemical compounds analysed. In order to have a bioreporter able to be used under different environmental toxics, O. tritici type strain was also engineered to fluoresce in the presence of micromolar levels of chromate and showed to be as specific as the first reporter. Their applicability on environmental samples (spiked Portuguese river water) was also demonstrated using either freshly grown or cryo-preserved cells, a treatment which constitutes an operational advantage. These reporter strains can provide on-demand usability in the field and in a near future may become a powerful tool in identification of chromate-contaminated sites.  相似文献   

18.
In Dabaoshan mine, dumping sites were the largest pollution source to the local environment. This study analyzed the activation and ecological risk of heavy metals in waste materials from five dumping sites. Results indicated that the acidification of waste materials was severe at all dumping sites, and pH decreased below 3.0 at four of the five sites. There was a drastic variation in Cu, Zn, Pb, and Cd concentrations in different sites. Site A with 12915.3 mg kg?1 Pb and 7.2 mg kg?1 Cd and site C with 1936.2 mg kg?1 Cu and 5069.0 mg kg?1 Zn were severely polluted. Higher concentrations of water-soluble Cu were probably the critical constraint for local pioneer plants. A significant positive correlation was found between the concentrations of water-soluble and HOAc-extractable elements, and the regression analysis showed that, compared with Cu, Zn and Cd, Pb was more difficult to be transformed from HOAc extractable to water soluble. Concentration of water soluble metals should be an important index, same as concentration of HOAc extractable metals, in assessing ecological risks, availability, and toxicity of heavy metals. The modified ecological risk index indicated that all dumping sites had very high potential ecological risks. It is necessary to decrease the availability of heavy metals to reduce the impact of waste materials on environment.  相似文献   

19.
Hydroxylation of 6-N-trimethyl-l-lysine(lys(Me3)) to 3-hydroxy-6-N-trimethyl-l-lysine(3-HO-lys(Me3)) by several rat tissues has been examined and compared. The kidney enzyme, which previously was shown to require molecular oxygen and α-ketoglutarate as cosubstrates, ferrous iron and ascorbate as cofactors, and to be stimulated by catalase, has a broad pH optimum ranging between 6.5 to 7.5 at 37 °C. As determined with crude tissue extracts from kidney, liver, heart, and skeletal muscle, similar apparent Km values were obtained for substrate, cosubstrates, and cofactors. In view of similar kinetic parameters among the several lys(Me3) hydroxylases examined in rat tissues, and the fact that the level of skeletal muscle lys(Me3) hydroxylase activity is comparable to that of heart, liver, and kidney, because of its large total mass, skeletal muscle may contribute significantly to the biosynthesis of l-carnitine from lys(Me3). The most effective inhibitors found, competitive with lys(Me3), were 2-N-acetyl-6-N-trimethyl-l-lysine, 6-N-monomethyl-l-lysine, and 6-N-dimethyl-l-lysine. l-2-Amino-6-N-trimethylammonium-4-hexynoate, d-2-amino-6-N-trimethylammonium-4-hexynoate, and dl2-amino-6-N-trimethylammonium-cis-4-hexenoate, also inhibited hydroxylase activity but by a yet undetermined mechanism. Oxalacetate, succinate, and citrate inhibited the hydroxylation reaction by competing with α-ketoglutarate. The binding of ferrous iron to the enzyme was competitively inhibited by ions of “soft metals” (e.g., Cd2+, Zn2+) but not by those of “hard metals” (e.g., Ca2+, Mg2+). Preincubation of the crude kidney enzyme for 15 min at 37 °C with mercuriphenylsulfonate, N-ethylmaleimide, iodoacetate, or iodoacetamide resulted in considerable inhibition of 3-HO-lys(Me3) formation. The degree of inhibition by N-ethylmaleimide could be reduced by including Zn (II) during preincubation of the enzyme. The effects of “soft” metals and sulfhydryl reagents on the enzyme suggest that sulfhydryl groups are required for ferrous iron binding in the active site.  相似文献   

20.
We are trying to understand individual differences in susceptibility to chromate toxicity by comparing three different lymphoblastic cell lines derived from three different individuals. We have compared the uptake of CrO 4 2− , the release of LDH from cells, the proliferation ability of the cells, and the DNA-protein crosslinks in these lymphoblastic cell lines exposed to chromate. We report here that one lymphoblastic cell line, GM0922B, appears to be considerably less sensitive than the other two cells lines to the cytotoxic effects of hexavalent chromium. The diminished sensitivity is almost twofold and can be accounted for by the decreased uptake of hexavalent chromium, which results in less lactate dehydrogenase release, and greater tolerance to chromate inhibition of cell proliferation and less DNA-protein crosslinking. This lower uptake of chromate combined with interindividual differences in extracellular Cr(VI) reducing capacity are probably the two most important determinants of genetic susceptibility to chromate toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号