首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice lacking Cu,Zn superoxide dismutase (SOD1) show accelerated, age-related loss of muscle mass. Lack of SOD1 may lead to increased superoxide, reduced nitric oxide (NO), and increased peroxynitrite, each of which could initiate muscle fiber loss. Single muscle fibers from flexor digitorum brevis of wild-type (WT) and Sod1(-/-) mice were loaded with NO-sensitive (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, DAF-FM) and superoxide-sensitive (dihydroethidium, DHE) probes. Gastrocnemius muscles were analyzed for SOD enzymes, nitric oxide synthases (NOS), and 3-nitrotyrosine (3-NT) content. A lack of SOD1 did not increase superoxide availability at rest because no increase in ethidium or 2-hydroxyethidium (2-HE) formation from DHE was seen in fibers from Sod1(-/-) mice compared with those from WT mice. Fibers from Sod1(-/-) mice had decreased NO availability (decreased DAF-FM fluorescence), increased 3-NT in muscle proteins indicating increased peroxynitrite formation and increased content of peroxiredoxin V (a peroxynitrite reductase), compared with WT mice. Muscle fibers from Sod1(-/-) mice showed substantially reduced generation of superoxide in response to contractions compared with fibers from WT mice. Inhibition of NOS did not affect DHE oxidation in fibers from WT or Sod1(-/-) mice at rest or during contractions, but transgenic mice overexpressing nNOS showed increased DAF-FM fluorescence and reduced DHE oxidation in resting muscle fibers. It is concluded that formation of peroxynitrite in muscle fibers is a major effect of lack of SOD1 in Sod1(-/-) mice and may contribute to fiber loss in this model, and that NO regulates superoxide availability and peroxynitrite formation in muscle.  相似文献   

2.
Skeletal muscle is repeatedly exposed to passive stretches due to the activation of antagonist muscles and to external forces. Stretch has multiple effects on muscle mass and function, but the initiating mechanisms and intracellular signals that modulate those processes are not well understood. Mechanical stretch applied to some cell types induces production of reactive oxygen species (ROS) and nitric oxide that modulate various cellular signalling pathways. The aim of this study was to assess whether intracellular activities of ROS and nitric oxide were modulated by passive stretches applied to single mature muscle fibres isolated from young and old mice. We developed a novel approach to apply passive stretch to single mature fibres from the flexor digitorum brevis muscle in culture and to monitor the activities of ROS and nitric oxide in situ by fluorescence microscopy. Passive stretch applied to single skeletal muscle fibres from young mice induced an increase in dihydroethidium oxidation (reflecting intracellular superoxide) with no increase in intracellular DAF-FM oxidation (reflecting nitric oxide activity) or CM-DCFH oxidation. In contrast, in fibres isolated from muscles of old mice passive stretch was found to induce an increase in intracellular nitric oxide activities with no change in DHE oxidation.  相似文献   

3.
A simple and sensitive assay and a cellular bioimaging method for nitric oxide (NO) were developed using a novel diaminofluorescein DAF-FM and its diacetate. DAF-FM is converted via an NO-specific mechanism to an intensely fluorescent triazole derivative. For the measurement of NO, the triazole derivative of DAF-FM was determined by reversed-phase high-performance liquid chromatography with fluorescence detection. In the presence of 1 microM DAF-FM, the concentrations of NOR-1, an NO donor, in the range of 2-200 nM were linearly related to the fluorescence intensity. This sensitive NO assay enabled us to detect the spontaneous and substance P-induced NO release from isolated porcine coronary arteries, both of which were dependent entirely on the NO synthase activity in vascular endothelial cells. We also obtained fluorescence images of cultured smooth muscle cells of the rat urinary bladder after loading with DAF-FM diacetate. In the cells pretreated with cytokines, the fluorescence intensity increased with time after DAF-FM loading. This increase in the fluorescence intensity was blocked by prior treatment of the muscle cells with an NO synthase inhibitor, N(G)-nitro-l-arginine methyl ester. Therefore, the present novel diaminofluorescein fluorometry should be useful not only for sensitive NO assay, but also for NO imaging in a variety of biological specimens.  相似文献   

4.
建立一个稳定和实时检测在不同剪切力作用下内皮细胞内一氧化氮含量的方法。利用流动小室建立内皮细胞剪切模型 ,在内皮细胞用DAF FM染色后 ,用Zeiss荧光共聚焦显微镜和ICCD摄象头检测细胞内的荧光强度。DAF FM的荧光强度可以反映一氧化氮的胞内含量。剪切力引起内皮细胞合成一氧化氮增加 ,并且这种作用是随着剪切力的增加而增加。剪切力的作用被一氧化氮合酶抑制剂L NAME全部抑制 ,被无Ca2 缓冲液部分抑制。这个方法可以实时反映一氧化氮含量的变化 ,可以用来研究剪切力引起一氧化氮变化的机制以及用来评价内皮细胞对剪切力的反应特性  相似文献   

5.
Nitric oxide is a major vasorelaxant and regulator of the blood pressure. The blood vessels contain several active sources of the superoxide radical, which reacts avidly with nitric oxide to form noxious peroxynitrite. There are large amounts of extracellular-superoxide dismutase (EC-SOD) in the vascular wall. To evaluate the importance of EC-SOD for the physiology of nitric oxide, here we studied the blood pressure in mice lacking the enzyme. In chronically instrumented non-anaesthetized mice there was no difference in mean arterial blood pressure between wild-type controls and EC-SOD mutants. Extensive inhibition of nitric oxide synthases with N -monomethyl- l -arginine however resulted in a larger increase in blood pressure, and infusion of the nitric oxide donor nitrosoglutathione caused less reduction in blood pressure in the EC-SOD null mice. We interpret the alterations to be caused by a moderately increased consumption of nitric oxide by the superoxide radical in the EC-SOD null mice. One role of EC-SOD may be to preserve nitric oxide, a function that should be particularly important in vascular pathologies, in which large increases in superoxide formation have been documented.  相似文献   

6.
Nitric oxide is a major vasorelaxant and regulator of the blood pressure. The blood vessels contain several active sources of the superoxide radical, which reacts avidly with nitric oxide to form noxious peroxynitrite. There are large amounts of extracellular-superoxide dismutase (EC-SOD) in the vascular wall. To evaluate the importance of EC-SOD for the physiology of nitric oxide, here we studied the blood pressure in mice lacking the enzyme. In chronically instrumented non-anaesthetized mice there was no difference in mean arterial blood pressure between wild-type controls and EC-SOD mutants. Extensive inhibition of nitric oxide synthases with N -monomethyl- l -arginine however resulted in a larger increase in blood pressure, and infusion of the nitric oxide donor nitrosoglutathione caused less reduction in blood pressure in the EC-SOD null mice. We interpret the alterations to be caused by a moderately increased consumption of nitric oxide by the superoxide radical in the EC-SOD null mice. One role of EC-SOD may be to preserve nitric oxide, a function that should be particularly important in vascular pathologies, in which large increases in superoxide formation have been documented.  相似文献   

7.
The aim of this study was to investigate the in vitro effects and regulatory mechanism of CGRP (calcitonin gene-related peptide) on NO (nitric oxide) production in osteoblasts. MOB (primary human mandibular osteoblasts) and osteoblast-like cells (MG-63) were either cultured with CGRP or co-incubated with inhibitors targeting eNOS (endothelial nitric oxide synthase), iNOS (inducible nitric oxide synthase), nNOS (neuronal nitric oxide synthase) and [Ca2+]i (intracellular Ca2+). The NO concentration in cell culture supernatants was measured during the first 24 h using the Griess test; cellular NO was marked with the fluorescent marker DAF-FM, DA (3-amino, 4-aminomethyl-2',7'-difluorescein; diacetate) and measured by fluorescence microscopy from 1 to 4 h after treatment. eNOS and iNOS mRNA expression levels were measured by quantitative RT-PCR during the first 24 h after treatment. CGRP-induced NO production in the supernatants was high between 1 to 12 h, while cellular NO was highest between 1 to 2 h after treatment and returned to basal levels by 3 h. Both in MG-63 cells and MOBs, the most effective CGRP concentration was 10 nM with a peak time of 1 h. CGRP-induced NO production decreased when eNOS activity was inhibited or when voltage-dependent L-type Ca2+ channels were blocked at 4 h. CGRP was not able to induce changes in iNOS or eNOS mRNA levels and had no effect on the cytokine-induced increase of iNOS expression. Our results suggest that CGRP transiently induces NO production in osteoblasts by elevating intracellular Ca2+ to stimulate the activity of eNOS in vitro.  相似文献   

8.
Previously, we found that catalase enhanced the protection afforded by superoxide dismutase to Escherichia coli against the simultaneous generation of superoxide and nitric oxide (Brunelli et al., Arch. Biochem. Biophys. 316:327-334, 1995). Hydrogen peroxide itself was not toxic in this system in the presence or absence of superoxide dismutase. We therefore investigated whether catalase might consume nitric oxide in addition to hydrogen peroxide. Catalase rapidly formed a reversible complex stoichiometrically with nitric oxide with the Soret band shifting from 406 to 426 nm and two new peaks appeared at 540 and at 575 nm, consistent with the formation of a ferrous-nitrosyl complex. Catalase consumed more nitric oxide upon the addition of hydrogen peroxide. Conversely, micromolar concentrations of nitric oxide slowed the catalase-mediated decomposition of hydrogen peroxide. Catalase pretreated with nitric oxide and hydrogen peroxide regained full activity after dialysis. Our results suggest that catalase can slowly consume nitric oxide while nitric oxide modestly inhibits catalase-dependent scavenging of hydrogen peroxide. The protective effects of catalase in combination with superoxide dismutase may result from two actions; reducing peroxynitrite formation by scavenging nitric oxide and by scavenging hydrogen peroxide before it reacts with superoxide dismutase to form additional superoxide.  相似文献   

9.
Hypothermia has been demonstrated to be an effective neuroprotective strategy in a number of models of ischaemic and excitotoxic neurodegeneration in vitro and in vivo. Reduced glutamate release and free radical production have been postulated as potential mechanisms underlying this effect but no definitive mechanism has yet been reported. In the current study, we have used oxygen-glucose deprivation in organotypic hippocampal slice cultures as an in vitro model of cerebral ischaemia. When assessed by propidium iodide fluorescence, reducing the temperature during oxygen-glucose deprivation to 31-33 degrees C was significantly neuroprotective but this effect was lost if the initiation of hypothermia was delayed until the post-insult recovery period. The neuroprotective effects of hypothermia were associated with a significant decrease in both nitric oxide production, as assessed by 3-amino-4-aminomethyl-2',7'-difluorofluorescein fluorescence, and superoxide formation. Further, hypothermia significantly attenuated NMDA-induced nitric oxide formation in the absence of hypoxia/hypoglycaemia. We conclude that the neuroprotective effects of hypothermia are mediated through a reduction in nitric oxide and superoxide formation and that this effect is likely to be downstream of NMDA receptor activation.  相似文献   

10.
Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.  相似文献   

11.
The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1 h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria‐derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5‐diaminofluorescein diacetate (DAF‐2‐DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF‐κB activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF‐2‐DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthine–xanthine oxidase), a mixture of NOS inhibitors and SOD‐PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise‐induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 2511–2518, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Oxidation of low density lipoprotein (LDL) has been shown to occur in the artery wall of atherosclerotic lesions in both animal models and human arteries. The oxidant(s) responsible for initiating this process are under intensive investigation and 15-lipoxygenase has been suggested in this context. Another possibility is that nitric oxide and superoxide, generated by cells present in the artery wall, react together to form peroxynitrite which decomposes to form the highly reactive hydroxyl radical. In the present study we have modelled the simultaneous generation of superoxide and nitric oxide by using the sydnonimine, SIN-1 and have investigated its effects on LDL. SIN-1 liberates both superoxide and nitric oxide during autooxidation resulting in the formation of hydroxyl radicals. We have demonstrated that superoxide generated by SIN-1 is not available to take part in a dismutation reaction since it reacts preferentially with nitric oxide. It follows, therefore, that during the autooxidation of SIN-1 little or no superoxide, or perhydroxyl radical will be available to initiate lipid peroxidation. We have shown that SIN-1 is capable of initiating the peroxidation of LDL and also converts the lipoprotein to a more negatively charged form. The SIN-1-dependent peroxidation of LDL is completely inhibited by superoxide dismutase which scavenges superoxide. Neither sodium nitroprusside or S-nitroso-n-acetyl penicillamine, which only produce nitric oxide, are able to modify LDL. These results are consistent with the hypothesis that a product of superoxide and nitric oxide could oxidize lipoproteins in the artery wall and so contribute to the pathogenesis of atherosclerosis in vivo.  相似文献   

13.
Hydrogen peroxide (H2O2) tolerance of Rhodococcus sp. strain APG1, previously isolated from the aquatic fern Azolla pinnata, was examined in relation to nitric oxide (NO) production by cells cultured on a variety of C sources. Cells inoculated onto A. pinnata fronds established a surface-sterilant resistant density of 2-4x10(7) cells g(-1) without causing disease. Compared to cultures containing glucose, fructose, mannitol, or glycerol, those provided only with sucrose displayed, on a per C basis, substantially lower (<10%) growth yields and higher resistance to H2O2. NO, a positive regulator of catalase synthesis in bacteria, was produced in larger amounts in sucrose-grown cells as evidence by eightfold greater per cell accumulations in the medium of nitrite (NO2-), a stable oxidation product of NO. Addition to cells of L-arginine, the substrate for nitric oxide synthase (NOS), stimulated production of NO, detected both by fluorometric reaction with diaminofluorescein-FM diacetate (DAF-FM DA) and by increased levels of NO2- in the culture medium. These results suggest that sucrose may enhance H2O2 tolerance of Rhodococcus APG1 by increasing cellular NO producing capacity. We propose a regulatory role for NOS in promoting tolerance of Rhodococcus APG1 to oxidative stress in the phyllosphere.  相似文献   

14.
Calcium-dependent release of NO from intracellular S-nitrosothiols   总被引:3,自引:0,他引:3  
The paper describes a novel cellular mechanism for rapid calcium-dependent nitric oxide (NO) release. This release occurs due to NO liberation from S-nitrosothiols. We have analysed the changes of NO concentration in acutely isolated pancreatic acinar cells. Supramaximal acetylcholine (ACh) stimulation induced a Ca(2+)-dependent increase in the fluorescence in the majority of cells loaded with the NO probe DAF-FM via a patch pipette. The ACh-induced NO signals were insensitive to inhibitors of calmodulin and protein kinase C but were inhibited by calpain antagonists. The initial part of the NO signals induced by 10 muM ACh showed little sensitivity to inhibition of NO synthase (NOS); however, cell pretreatment with NO donors (increasing cellular S-nitrosothiol contents) substantially enhanced the initial component of NO responses. Pancreatic acinar cells were able to generate fast calcium-dependent NO responses when stimulated with physiological or supramaximal doses of secretagogues. Importantly, the source of this NO is the already available S-nitrosothiol store rather than de novo synthesis by NOS. A similar mechanism of NO release was found in dorsal root ganglia neurons.  相似文献   

15.
Inhibition of nitric oxide synthesis prevents rat embryonic motor neurons from undergoing apoptosis when initially cultured without brain-derived neurotrophic factor. Using an improved cell culture medium, we found that the partial withdrawal of trophic support even weeks after motor neurons had differentiated into a mature phenotype still induced apoptosis through a process dependent upon nitric oxide. However, nitric oxide itself was not directly toxic to motor neurons. To investigate whether intracellular superoxide contributed to nitric oxide-dependent apoptosis, we developed a novel method using pH-sensitive liposomes to deliver Cu, Zn superoxide dismutase intracellularly into motor neurons. Intracellular superoxide dismutase prevented motor neuron apoptosis from trophic factor withdrawal, whereas empty liposomes, inactivated superoxide dismutase in liposomes or extracellular superoxide dismutase did not. Neither hydrogen peroxide nor nitrite added separately or in combination affected motor neuron survival. Our results suggest that a partial reduction in trophic support induced motor neuron apoptosis by a process requiring the endogenous production of both nitric oxide and superoxide, irrespective of the extent of motor neuron maturation in culture.  相似文献   

16.
Nitric oxide (NO) has been suggested to play a role in the hypersensitive response (HR). Single- and double-label fluorescence microscopy experiments were conducted using Arabidopsis leaves infected with Pseudomonas syringae pv. tomato DC3000 carrying either avrB or avrRpt2. Kinetics of NO production were followed by measurement of green 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) triazole fluorescence in leaves coinfiltrated with DAF-FM diacetate. Kinetics of hypersensitive cell death were followed by measurement of cytoplasmic red fluorescence following internalization of coinfiltrated propidium iodide through compromised plasma membranes. Neither NO accumulation nor cell death was seen until approximately 3 h postinoculation of Columbia leaves with DC3000.avrB or approximately 5.5 h post-inoculation with DC3000.avrRpt2. Subsequent NO accumulation kinetics closely paralleled HR progression in both Columbia and ndr1-1 mutant plants. These data established that NO accumulation does not happen sufficiently early for NO to be a signaling component controlling HR triggering. NO accumulation did contribute to the HR, as proven by an approximately 1-h delay in cell death kinetics caused by an NO scavenger or an NO synthase inhibitor. NO was first seen as punctate foci at the cell surface. Subsequent NO accumulation patterns were consistent with NO being an intercellular signal that functions in cell-to-cell spread of the HR.  相似文献   

17.
Tyrosine nitration is a widely used marker of peroxynitrite (ONOO(-)) produced from the reaction of nitric oxide with superoxide. Pfeiffer and Mayer (Pfeiffer, S., and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285) reported that superoxide produced from hypoxanthine plus xanthine oxidase in combination with nitric oxide produced from spermine NONOate did not nitrate tyrosine at neutral pH. They suggested that nitric oxide and superoxide at neutral pH form a less reactive intermediate distinct from preformed alkaline peroxynitrite that does not nitrate tyrosine. Using a stopped-flow spectrophotometer to rapidly mix potassium superoxide with nitric oxide at pH 7.4, we report that an intermediate spectrally and kinetically identical to preformed alkaline cis-peroxynitrite was formed in 100% yield. Furthermore, this intermediate nitrated tyrosine in the same yield and at the same rate as preformed peroxynitrite. Equivalent concentrations of nitric oxide under aerobic conditions in the absence of superoxide did not produce detectable concentrations of nitrotyrosine. Carbon dioxide increased the efficiency of nitration by nitric oxide plus superoxide to the same extent as peroxynitrite. In experiments using xanthine oxidase as a source of superoxide, tyrosine nitration was substantially inhibited by urate formed from hypoxanthine oxidation, which was sufficient to account for the lack of tyrosine nitration previously reported. We conclude that peroxynitrite formed from the reaction of nitric oxide with superoxide at physiological pH remains an important species responsible for tyrosine nitration in vivo.  相似文献   

18.
Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2∙−) as part of the innate host defense system, but exaggerated and sustained O2∙− generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2∙− and peroxynitrite (ONOO) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2∙− and ONOO production in macrophages, which was significantly reduced by nitrite (10 µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2∙− generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response.  相似文献   

19.
Our novel fluorescent indicator, DAF-FM, permits the bioimaging of nitric oxide (NO) in living cells with high resolution in space and time, with stable intensity above pH 5.8. A membrane-permeable derivative, DAF-FM DA, was applied to imaging of NO generated in rat hippocampal slices by exposure to an aglycemic medium. NO production was observed mainly in the CA1 area, and was dependent on the concentration of O(2). During exposure to an anoxic-aglycemic medium, NO was hardly produced, while marked elevation of intracellular Ca(2+) was observed. Production of NO increased sharply as soon as the perfusate was changed to the normal medium. These results suggest that NO synthase is activated after reperfusion rather than during ischemia.  相似文献   

20.
Lenses from mice lacking the antioxidant enzyme copper-zinc superoxide dismutase (SOD1) show elevated levels of superoxide radicals and are prone to developing cataract when exposed to high levels of glucose in vitro. As superoxide may react further with nitric oxide, generating cytotoxic reactive nitrogen species, we attempted to evaluate the involvement of nitric oxide in glucose-induced cataract. Lenses from SOD1-null and wild-type mice were incubated with high or normal levels of glucose (55.6 and 5.56 mM). A nitric oxide synthase inhibitor (L-NAME) or a nitric oxide donor (DETA/NO) was added to the culture medium. Cataract development was assessed using digital image analysis of lens photographs and cell damage by analyzing the leakage of lactate dehydrogenase. The levels of superoxide radicals in the lenses were also measured. L-NAME was found to reduce cataract development and cell damage in the SOD1-null lenses exposed to high glucose. On the other hand, DETA/NO accelerated cataract development, especially in the SOD1-null lenses. These lenses also showed a higher leakage of lactate dehydrogenase than wild-type controls. We conclude that a combination of high glucose and absence of SOD1 increases the formation of cataract and that nitric oxide probably contributes to this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号