首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of QTLs Underlying Water-Logging Tolerance in Soybean   总被引:3,自引:0,他引:3  
Soil water-logging can cause severe damage to soybean [Glycine max (L.) Merr.] and results in significant yield reduction. The objective of this study was to identify quantitative trait loci (QTL) that condition water-logging tolerance (WLT) in soybean. Two populations with 103 and 67 F6:11 recombinant inbred lines (RILs) from A5403 × Archer (Population 1) and P9641 × Archer (Population 2), respectively, were used as the mapping populations. The populations were evaluated for WLT in manually flooded fields in 2001, 2002, and 2003. Significant variation was observed for WLT among the lines in the two populations. No transgressive tolerant segregants were observed in either population. Broad-sense heritability of WLT for populations 1 and 2 were 0.59 and 0.43, respectively. The tolerant and sensitive RILs from each population were selected to create a tolerant bulk and a sensitive bulk, respectively. The two bulks and the parents of each population were tested with 912 simple sequence repeat (SSR) markers to select candidate regions on the linkage map that were associated with WLT. Markers from the candidate regions were used to genotype the RILs in both populations. Both single marker analysis (SMA) and composite interval mapping (CIM) were used to identify QTL for WLT. Seventeen markers in Population 1 and 15 markers in Population 2 were significantly (p <0.0001) associated with WLT in SMA. Many of these markers were linked to Rps genes or QTL conferring resistance to Phytophthora sojae Kaufmann and Gerdemann. Five markers, Satt599 on linkage group (LG) A1, Satt160, Satt269, and Satt252 on LG F, and Satt485 on LG N, were significant (p <0.0001) for WLT in both populations. With CIM, a WLT QTL was found close to the marker Satt385 on LG A1 in Population 1 in 2003. This QTL explained 10% of the phenotypic variation and the allele that increased WLT came from Archer. In Population 2 in 2002, a WLT QTL was located near the marker Satt269 on LG F. This QTL explained 16% of the phenotypic variation and the allele that increased WLT also came from Archer.  相似文献   

2.
Association mapping is a powerful high-resolution mapping tool for complex traits. The objective of this study was to identify QTLs for partial resistance to Phytophthora sojae. In this study, we evaluated a total of 214 soybean accessions by the hypocotyl inoculation method, and 175 were susceptible. The 175 susceptible accessions were then evaluated for P. sojae partial resistance using slant board assays. The 175 accessions were screened with 138 SSR markers that generated 730 SSR alleles. A subset of 495 SSR loci with minor allele frequency (MAF) ≥ 0.05 was used for association mapping by the Tassel general linear model (GLM) and mixed linear model (MLM) program. This soybean population could be divided into two subpopulations and no or weak relatedness was detected between pairwise accessions. Four SSR alleles, Satt634-133, Satt634-149, Sat_222-168 and Satt301-190, associated with partial resistance to P. sojae were detected by both GLM and MLM methods. Of these identified markers, one marker, Satt301, was located in regions where P. sojae resistance QTL have been previously mapped using linkage analysis. The identified markers will help to understand the genetic basis of partial resistance, and facilitate future marker-assistant selection aimed to improve resistance to P. sojae and reduce disease-related mortality in soybean.  相似文献   

3.
The exponential development of molecular markers enables a more effective study of the genetic architecture of traits of economic importance, like test weight in wheat (Triticum aestivum L.), for which a high value is desired by most end-users. The association mapping (AM) method now allows more precise exploration of the entire genome. AM requires populations with substantial genetic variability of the traits of interest. The breeding lines at the end of a selection cycle, characterized for numerous traits, represent a potentially useful population for AM studies. Using three elite line populations, selected by several breeders and genotyped with about 2,500 Diversity Arrays Technology markers, several associations were identified between these markers and test weight, grain yield and heading date. To minimize spurious associations, we compared the general linear model and mixed linear model (MLM), which adjust for population structure and kinship differently. The MLM model with the kinship matrix was the most efficient. Finally, elite lines from several breeding programs had sufficient genetic variability to allow for the mapping of several chromosomal regions involved in the variation of three important traits.  相似文献   

4.
Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, a major limitation of soy proteins is their deficiency in sulfur-containing amino acids, methionine (Met) and cysteine (Cys). The objective of this study was to identify quantitative trait loci (QTL) associated with Met and Cys concentration in soybean seed. To achieve this objective, 101 F6-derived recombinant inbred lines (RIL) from a population developed from a cross of N87-984-16 × TN93-99 were used. Ground soybean seed samples were analyzed for Met and Cys concentration using a near infrared spectroscopy instrument. Data were analyzed using SAS software and QTL Cartographer. RIL differed (P<0.01) in Met and Cys concentrations, with a range of 5.1–7.3 (g kg−1 seed dry weight) for Cys and 4.4–8.8 (g kg−1 seed dry weight) for Met. Heritability estimates on an entry mean basis were 0.14 and 0.57 for Cys and Met, respectively. A total of 94 polymorphic simple sequence repeat molecular genetic markers were screened in the RIL. Single factor ANOVA was used to identify candidate QTL, which were confirmed by composite interval mapping using QTL Cartographer. Four QTL linked to molecular markers Satt235, Satt252, Satt427 and Satt436 distributed on three molecular linkage groups (MLG) D1a, F and G were associated with Cys and three QTL linked to molecular markers Satt252, Satt564 and Satt590 distributed on MLG F, G and M were associated with Met concentration in soybean seed. QTL associated with Met and Cys in soybean seed will provide important information to breeders targeting improvements in the nutritional quality of soybean.  相似文献   

5.
Alkaline soil restricts soybean plant growth and yield. In our previous study, a major alkaline salt tolerance quantitative trait locus (QTL) was identified in soybean on chromosome 17. In this study, the residual heterozygous line (RHL46), which was selected from a population of F6 recombinant inbred lines (RILs) derived from a cross between an alkaline salt-sensitive soybean cultivar Jackson and a tolerant wild soybean accession JWS156-1, was used for validation and high-resolution mapping of the QTL. In a large segregating population (n = 1,109), which was produced by self-pollinating heterozygotes of RHL46, segregation of alkaline salt tolerance showed a continuous distribution, and the tolerant plants were predominant. Linkage mapping analysis revealed a major QTL with a large dominant effect for alkaline salt tolerance, and the highest LOD score was detected between the single sequence repeat (SSR) markers GM17-12.2 and Satt447. Furthermore, 10 fixed recombinant lines carrying chromosome fragments of different lengths in the QTL region were selected from the RHL46 progeny. Phenotype evaluation and SSR marker analysis of the recombinant lines narrowed down the QTL to a 3.33-cM interval region between the markers GM17-11.6 and Satt447 with a physical map length of approximately 771 kb. High-resolution mapping of the alkaline salt tolerance QTL will be useful not only for marker-assisted selection in soybean breeding programs but also for map-based cloning of the alkaline salt tolerance gene in order to understand alkaline salt tolerance in soybean and other plant species.  相似文献   

6.
To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain), and 40 microsatellite markers. Population structure analysis performed in ‘Structure’ grouped the accessions into two principal groups; the Mediterranean (Western-Europe) and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM) approach using co-ancestry values from population structure and kinship estimates (K model) as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.  相似文献   

7.
The Rxp locus in soybean [Glycine max (L.) Merr.] that conditions reaction to bacterial pustule was mapped by simple sequence repeat (SSR) marker analysis. A population of 116 F4-derived lines from a cross between the resistant parent Young and the susceptible parent PI 416937 was used for mapping. The Rxp locus was mapped 3.9 cM from Satt372 and 12.4 cM from Satt014 on linkage group D2. Linkage associations were confirmed by identifying a close association between the SSR genotype at each locus identified as flanking Rxp and the bacterial pustule reaction of individual lines derived from a population different from the one used for mapping. A molecular pedigree analysis showed that bacterial pustule-resistant cultivars inherited the resistance gene rxp from the ancestral cultivar CNS based on their consistent genotypic pattern at flanking marker loci. Based on the results of the study, marker-assisted selection for rxp would be very effective.  相似文献   

8.
Identification of marker–trait associations is the first step towards marker-assisted selection in plant breeding. Here we assess genetic diversity and population structure of 94 diverse wheat elite lines and use genome-wide association mapping to identify marker–trait associations for five important traits: kernel hardness (KHA), thousand-kernel weight, grain protein content, test weight (TWT), and plant height (PHT). The 94 accessions employed in this study were grouped into three subpopulations based on the first three principal components, which accounted for 51.5 % of the variations. A mixed linear model was used to detect marker–trait associations incorporating covariance of population structure and relative kinship. A total of six marker loci was significantly associated with KHA, TWT, and PHT after the correction of false discovery rate (α c  = 0.05). The gene pinB was found to be highly associated with KHA, and is reported to be a major determinant of KHA together with the gene pinA at the Ha locus on chromosome 5D. Marker XwPt-7187 on chromosome 2A was also significantly associated with KHA, two Diversity Arrays Technology markers XwPt-1250 and XwPt-4628 with TWT, and marker Xgwm512 with PHT, making the first report of marker–trait associations in these genomic regions.  相似文献   

9.
Asian soybean rust (ASR) is caused by the fungal pathogen Phakopsora pachyrhizi Sydow & Sydow. It was first identified in Brazil in 2001 and quickly infected soybean areas in several countries in South America. Primary efforts to combat this disease must involve the development of resistant cultivars. Four distinct genes that confer resistance against ASR have been reported: Rpp1, Rpp2, Rpp3, and Rpp4. However, no cultivar carrying any of those resistance loci has been released. The main objective of this study was to genetically map Rpp2 and Rpp4 resistance genes. Two F(2:3) populations, derived from the crosses between the resistant lines PI 230970 (Rpp2), PI 459025 (Rpp4) and the susceptible cultivar BRS 184, were used in this study. The mapping populations and parental lines were inoculated with a field isolate of P. pachyrhizi and evaluated for lesion type as resistant (RB lesions) or susceptible (TAN lesions). The mapping populations were screened with SSR markers, using the bulk segregant analysis (BSA) to expedite the identification of linked markers. Both resistance genes showed an expected segregation ratio for a dominant trait. This study allowed mapping Rpp2 and Rpp4 loci on the linkage groups J and G, respectively. The associated markers will be of great value on marker assisted selection for this trait.  相似文献   

10.
Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection.  相似文献   

11.
Kunitz trypsin inhibitor, a proteinaceous antinutritional factor present in soybean seeds, is responsible for inferior nutritional quality of raw soybean and incompletely processed soy products. The objective of the present investigation was to validate the SSR markers (Satt228 and Satt409) reported to be linked to Ti locus in an Indian soybean population generated from the cross between soybean cultivar LSb1 (TiTi) and PI542044 (titi). Parental polymorphism was surveyed using Satt409, Satt228 and 5 SSR markers in the neighbouring genomic region of Ti locus. A portion of the cotyledon of F2 seeds was used for analyzing the presence or absence of kunitz trypsin inhibitor polypeptide electrophoretically while the remaining portion containing the embryo was used for raising the F2 plants (104) for the development of mapping population. The SSR marker Satt228 reported to be tightly linked with Ti locus was not found to be polymorphic for the parents used in our study. Satt409 was found to be linked with Ti locus at 4.7 cM. Besides, a new marker Satt538 was found to be linked with Ti locus at a distance of 17.8 cM. Thus, the SSR marker Satt409 can be useful for Marker Assisted Selection for transferring titi allele in the background of Indian soybean genotypes.  相似文献   

12.
Quantitative trait locus (QTL) detection is commonly performed by analysis of designed segregating populations derived from two inbred parental lines, where absence of selection, mutation and genetic drift is assumed. Even for designed populations, selection cannot always be avoided, with as consequence varying correlation between genotypes instead of uniform correlation. Akin to linkage disequilibrium mapping, ignoring this type of genetic relatedness will increase the rate of false-positives. In this paper, we advocate using mixed models including genetic relatedness, or ‘kinship’ information for QTL detection in populations where selection forces operated. We demonstrate our case with a three-way barley cross, designed to segregate for dwarfing, vernalization and spike morphology genes, in which selection occurred. The population of 161 inbred lines was screened with 1,536 single nucleotide polymorphisms (SNPs), and used for gene and QTL detection. The coefficient of coancestry matrix was estimated based on the SNPs and imposed to structure the distribution of random genotypic effects. The model incorporating kinship, coancestry, information was consistently superior to the one without kinship (according to the Akaike information criterion). We show, for three traits, that ignoring the coancestry information results in an unrealistically high number of marker–trait associations, without providing clear conclusions about QTL locations. We used a number of widely recognized dwarfing and vernalization genes known to segregate in the studied population as landmarks or references to assess the agreement of the mapping results with a priori candidate gene expectations. Additional QTLs to the major genes were detected for all traits as well.  相似文献   

13.
Marker–trait associations based on populations from controlled crosses have been established in peach using markers mapped on the peach consensus map. In this study, we explored the utility of unstructured populations for association mapping to determine useful marker–trait associations in peach/nectarine cultivars. We used 94 peach cultivars representing local Spanish and modern cultivars from international breeding programs that are maintained at the Experimental Station of Aula Dei, Spain. This collection was characterized for pomological traits and was screened with 40 SSR markers that span the peach genome. Population structure analysis using STRUCTURE software identified two subpopulations, the local and modern cultivars, with admixture within both groups. The local Spanish cultivars were somewhat less diverse than modern cultivars. Marker–trait associations were determined in TASSEL with and without modelling coefficient of membership (Q) values as covariates. The results showed significant associations with pomological traits. We chose three markers on LG4 because of their proximity to the endoPG locus (freestone–melting flesh) that strongly affects pomological traits. Two genotypes of BPPCT015 marker showed significant associations with harvest date, flavonoids and sorbitol. Also, two genotypes of CPPCT028 showed associations with harvest date, total phenolics, RAC, and total sugars. Finally, two genotypes of endoPG1 showed associations with flesh firmness and total sugars. The analysis of linkage disequilibrium (LD) revealed a high level of LD up to 20 cM, and decay at farther distances. Therefore, association mapping could be a powerful tool for identifying marker–trait associations and would be useful for marker-assisted selection in peach breeding.  相似文献   

14.
QTL analysis of root traits as related to phosphorus efficiency in soybean   总被引:3,自引:0,他引:3  

Background and Aims

Low phosphorus (P) availability is a major constraint to soybean growth and production, especially in tropical and subtropical areas. Root traits have been shown to play critical roles in P efficiency in crops. Identification of the quantitative trait loci (QTLs) conferring superior root systems could significantly enhance genetic improvement in soybean P efficiency.

Methods

A population of 106 F9 recombinant inbred lines (RILs) derived from a cross between BD2 and BX10, which contrast in both P efficiency and root architecture, was used for mapping and QTL analysis. Twelve traits were examined in acid soils. A linkage map was constructed using 296 simple sequence repeat (SSR) markers with the Kosambi function, and the QTLs associated with these traits were detected by composite interval mapping and multiple-QTL mapping.

Key Results

The first soybean genetic map based on field data from parental genotypes contrasting both in P efficiency and root architecture was constructed. Thirty-one putative QTLs were detected on five linkage groups, with corresponding contribution ratios of 9·1–31·1 %. Thirteen putative QTLs were found for root traits, five for P content, five for biomass and five for yield traits. Three clusters of QTLs associated with the traits for root and P efficiency at low P were located on the B1 linkage group close to SSR markers Satt519 and Satt519-Sat_128, and on the D2 group close to Satt458; and one cluster was on the B1 linkage group close to Satt519 at high P.

Conclusions

Most root traits in soybean were conditioned by more than two minor QTLs. The region closer to Satt519 on the B1 linkage group might have great potential for future genetic improvement for soybean P efficiency through root selection.  相似文献   

15.
Root-knot nematodes (Meloidogyne spp.) can cause severe yield loss of soybean [Glycine max (L.) Merr.] in the southern production region of the USA. Planting root-knot nematode-resistant cultivars is the most effective method of preventing yield loss. DNA marker-assisted breeding may accelerate the development of root-knot nematode-resistant cultivars. RFLP markers have previously been used to identify quantitative trait loci (QTLs) conferring resistance to southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood] (Mi) in a F2:3 soybean population created by crossing the resistant PI96354 and the susceptible ’Bossier.’ A major QTL on linkage group (LG) O conditioning 31% of the variation in Mi gall number and a minor QTL on LG-G conditioning 14% of the gall variation were reported. With the development of SSR markers for soybean improvement, a higher level of mapping resolution and semi-automated detection has become possible. The objectives of this research were: (1) to increase the marker density in the genomic regions of the QTLs for Mi resistance on LG-O and LG-G with SSR markers; and (2) to confirm the effect of the QTLs in a second population and a different genetic background. With SSR markers, the QTL on LG-O was flanked by Satt492 and Satt358, and on LG-G by Satt012 and Satt505. Utilizing SSR markers flanking the two QTLs, marker-assisted selection was performed in a second F2:3 population of PI96354× Bossier. Results confirmed the effectiveness of marker-assisted selection to predict the Mi phenotypes. By screening the BC2F2 population of Prichard (3)×G93–9009 we confirmed that selection for the minor QTL on LG-G with flanking SSR markers would enhance the resistance of lines containing the major QTL (which is most-likely Rmi1). Received: 29 September 2000 / Accepted: 17 April 2001  相似文献   

16.
Genomic Regions Associated with Amino Acid Composition in Soybean   总被引:3,自引:0,他引:3  
Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, few studies have been conducted to evaluate genomic regions controlling amino acid composition in soybean. It is important to study the genetics of amino acid composition to achieve improvements through breeding. The objectives of this study were to determine the ratios between essential to non-essential (E:NE) and essential to total (E:T) amino acids, and to identify genomic regions controlling essential and non-essential amino acid composition in soybean seed. To achieve these objectives, 101 F6-derived recombinant inbred lines (RIL) developed from a cross of N87-984-16 × TN93-99 were used. Ground soybean seed samples were analyzed for amino acids using a near infrared spectroscopy (NIRS) instrument. A significant (p < 0.01) difference among the RIL was found for amino acid composition. Heritability estimates on an entry mean basis ranged from 0.13 for His to 0.67 for Tyr. A total of 94 polymorphic simple sequence repeat (SSR) molecular genetic markers were screened in DNA from progenies. Single factor ANOVA was used to identify candidate quantitative trait loci (QTL), which were then confirmed by QTL Cartographer. At least one QTL for each amino acid was detected in this population. QTL linked to molecular markers Satt143, Satt168, Satt203, Satt274 and Satt495 were associated with most of the amino acids. Phenotypic variation explained by an individual QTL ranged from 9.4 to 45.3%. QTL detected for amino acids in soybean in this experiment are expected to be useful for future breeding programs targeting development of improved soybean amino acid composition for human and animal nutrition.  相似文献   

17.
A set of about 100 winter barley (Hordeum vulgare L.) cultivars, comprising diverse and economically important German barley elite germplasm released during the last six decades, was previously genotypically characterized by single nucleotide polymorphism (SNP) markers using the Illumina GoldenGate BeadArray Technology to detect associations with phenotypic data estimated in three-year field trials at 12 locations. In order to identify further associations and to obtain information on whether the marker type influences the outcome of association genetics studies, the set of winter barley cultivars was re-analyzed using Diversity Arrays Technology (DArT) markers. As with the analysis of the SNPs, only polymorphic markers present at an allele frequency >5 % were included to detect associations in a mixed linear model (MLM) approach using the TASSEL software (P?≤?0.001). The population structure and kinship matrix were estimated on 72 simple sequence repeats (SSRs) covering the whole barley genome. The respective average linkage disequilibrium (LD) analyzed with DArT markers was estimated at 5.73 cM. A total of 52 markers gave significant associations with at least one of the traits estimated which, therefore, may be suitable for marker-assisted breeding. In addition, by comparing the results to those generated using the Illumina GoldenGate BeadArray Technology, it turned out that a different number of associations for respective traits is detected, depending on the marker system. However, as only a few of the respective DArT and Illumina markers are present in a common map, no comprehensive comparison of the detected associations was feasible, but some were probably detected in the same chromosomal regions. Because of the identification of additional marker–trait associations, it may be recommended to use both marker techniques in genome-wide association studies.  相似文献   

18.
High embryogenesis capacity of soybean (Glycine max (L.) Merr.) in vitro possessed potential for effective genetic engineering and tissue culture. The objects of this study were to identify quantitative trait loci (QTL) underlying embryogenesis traits and to identify genotypes with higher somatic embryogenesis capacity. A mapping population, consisting of 126 F5:6 recombinant inbred lines, was advanced by single-seed-descent from cross between Peking (higher primary and secondary embryogenesis) and Keburi (lower primary and secondary embryogenesis). This population was evaluated for primary embryogenesis capacity from immature embryo cultures by measuring the frequency of somatic embryogenesis (FSE), the somatic embryo number per explant (EPE) and the efficiency of somatic embryogenesis (ESE). A total of 89 simple sequence repeat markers were used to construct a genetic linkage map. Six QTL were associated with somatic embryogenesis. Two QTL for FSE were found, QFSE-1 (Satt307) and QFSE-2 (Satt286), and both were located on linkage group C2 that explained 45.21 and 25.97% of the phenotypic variation, respectively. Four QTL for EPE (QEPE-1 on MLG H, QEPE-2 on MLG G and QEPE-3 on MLG G) were found, which explained 7.11, 7.56 and 6.12% of phenotypic variation, respectively. One QTL for ESE, QESE-1 (Satt427), was found on linkage group G that explained 6.99% of the phenotypic variation. QEPE-2 and QESE-1 were located in the similar region of MLG G. These QTL provide potential for marker assistant selection of genotypes with higher embryogenesis.  相似文献   

19.
Association Analysis of the Amino Acid Contents in Rice   总被引:5,自引:0,他引:5  
The main objective of the present study was to identify simple sequence repeat (SSR) markers associated with the amino acid content of rice (Oryza sativa L.). SSR markers were selected by prescreening for the relationship to amino acid content. Eighty-four rice landrace accessions from Korea were evaluated for 16 kinds of amino acids in brown rice and genotyped with 25 SSR markers. Analysis of population structure revealed four subgroups in the population. Linkage disequilibrium (LD) patterns and distributions are of fundamental importance for genome-wide mapping associations. The mean r2 value for all intrachromosomal loci pairs was 0.033. LD between linked markers decreased with distance. Marker-trait associations were investigated using the unified mixed-model approach, considering both population structure (Q) and kinship (K). A total of 42 marker-trait associations with amino acids (P < 0.05) were identified using 15 different SSR markers covering three chromosomes and explaining more than 40% of the total variation. These results suggest that association analysis In rice is a viable alternative to quantitative trait loci mapping and should help rice breeders develop strategies for improving rice quality.  相似文献   

20.
Off-flavour generated in soy products is ascribed to soybean seed lipoxygenase-1, lipoxygenase-2 and lipoxygenase-3, controlled by single dominant genes Lox1, Lox2 and Lox3, respectively. Lox2 locus has already been mapped and reported to be tightly linked with Lox1 locus. The objective of the present study was to map Lox1 locus by investigating the SSR markers reported to be linked with Lox2 locus and the neighbouring SSR markers in two mapping populations of 116 and 91 plants developed from LSb1 × PI408251 and JS335 × PI408251, respectively. Parental polymorphism was surveyed using SSR markers Sat_074, Satt522 reported to be linked with Lox2 locus and the SSR markers in its proximity. F2:3 seeds were used for assaying lipoxygenase-1 to identify the genotype of the F2 individuals. SSR marker Satt656 was found to be tightly linked with Lox1 locus at distance of 3.6 and 4.8 cM in the mapping population of LSb1 × PI408251 and JS335 × PI408251, respectively. SSR marker Satt656 can be useful for marker assisted selection for transferring recessive allele of lipoxygenase-1 in the background of high yielding soybean genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号