首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.  相似文献   

2.
3.
4.
5.
周文彦  曹槐 《生物信息学》2008,6(3):138-141
图论是以图为研究对象的数学分支,是一门研究事物对象在图表示法中的特征与性质的学科。鉴于RNA二级结构在功能基因组研究中的重要地位,已发展了用二维图解表示法描述RNA二级结构。文章介绍了用于RNA二级结构图解表示法的两种图,即树图和对偶图的构造规则。并在树图表示基础上产生Laplacian矩阵和相应本征值谱。以有害突变预测和类RNA模体设计的例子,说明图论在RNA二级结构中的应用,同时对可能存在的一些问题做了讨论。  相似文献   

6.
The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function.  相似文献   

7.
With ever-increasing available data, predicting individuals'' preferences and helping them locate the most relevant information has become a pressing need. Understanding and predicting preferences is also important from a fundamental point of view, as part of what has been called a “new” computational social science. Here, we propose a novel approach based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of social interactions. Our model is in the spirit of predicting individuals'' preferences based on the preferences of others but, rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible models. We show that our approach is considerably more accurate than leading recommender algorithms, with major relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis of the characteristics of those groups.  相似文献   

8.
9.
Cao S  Chen SJ 《Nucleic acids research》2006,34(9):2634-2652
Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease.  相似文献   

10.
Despite current enthusiasm for investigation of gene-gene interactions and gene-environment interactions, the essential issue of how to define and detect gene-environment interactions remains unresolved. In this report, we define gene-environment interactions as a stochastic dependence in the context of the effects of the genetic and environmental risk factors on the cause of phenotypic variation among individuals. We use mutual information that is widely used in communication and complex system analysis to measure gene-environment interactions. We investigate how gene-environment interactions generate the large difference in the information measure of gene-environment interactions between the general population and a diseased population, which motives us to develop mutual information-based statistics for testing gene-environment interactions. We validated the null distribution and calculated the type 1 error rates for the mutual information-based statistics to test gene-environment interactions using extensive simulation studies. We found that the new test statistics were more powerful than the traditional logistic regression under several disease models. Finally, in order to further evaluate the performance of our new method, we applied the mutual information-based statistics to three real examples. Our results showed that P-values for the mutual information-based statistics were much smaller than that obtained by other approaches including logistic regression models.  相似文献   

11.
12.
13.
RNA junctions are important structural elements that form when three or more helices come together in space in the tertiary structures of RNA molecules. Determining their structural configuration is important for predicting RNA 3D structure. We introduce a computational method to predict, at the secondary structure level, the coaxial helical stacking arrangement in junctions, as well as classify the junction topology. Our approach uses a data mining approach known as random forests, which relies on a set of decision trees trained using length, sequence and other variables specified for any given junction. The resulting protocol predicts coaxial stacking within three- and four-way junctions with an accuracy of 81% and 77%, respectively; the accuracy increases to 83% and 87%, respectively, when knowledge from the junction family type is included. Coaxial stacking predictions for the five to ten-way junctions are less accurate (60%) due to sparse data available for training. Additionally, our application predicts the junction family with an accuracy of 85% for three-way junctions and 74% for four-way junctions. Comparisons with other methods, as well applications to unsolved RNAs, are also presented. The web server Junction-Explorer to predict junction topologies is freely available at: http://bioinformatics.njit.edu/junction.  相似文献   

14.
The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators.  相似文献   

15.
Abstract

Measuring the (dis)similarity between RNA secondary structures is critical for the study of RNA secondary structures and has implications to RNA functional characterization. Although a number of methods have been developed for comparing RNA structural similarities, their applications have been limited by the complexity of the required computation. In this paper, we present a novel method for comparing the similarity of RNA secondary structures generated from the same RNA sequence, i.e., a secondary structure ensemble, using a matrix representation of the RNA structures. Relevant features of the RNA secondary structures can be easily extracted through singular value decomposition (SVD) of the representing matrices. We have mapped the feature vectors of the singular values to a kernel space, where (dis)similarities among the mapped feature vectors become more evident, making clustering of RNA secondary structures easier to handle. The pair-wise comparison of RNA structures is achieved through computing the distance between the singular value vectors in the kernel space. We have applied a fuzzy kernel clustering method, using this similarity metric, to cluster the RNA secondary structure ensembles. Our application results suggest that our fuzzy kernel clustering method is highly promising for classifications of RNA structure ensembles, because of its low computational complexity and high clustering accuracy.  相似文献   

16.
The hypothesis that RNA coaxial stacking can be predicted by free energy minimization using nearest-neighbor parameters is tested. The results show 58.2% positive predictive value (PPV) and 65.7% sensitivity for accuracy of the lowest free energy configuration compared with crystal structures. The probability of each stacking configuration can be predicted using a partition function calculation. Based on the dependence of accuracy on the calculated probability of the stacks, a probability threshold of 0.7 was chosen for predicting coaxial stacks. When scoring these likely stacks, the PPV was 66.7% at a sensitivity of 51.9%. It is observed that the coaxial stacks of helices that are not separated by unpaired nucleotides can be predicted with a significantly higher accuracy (74.0% PPV, 66.1% sensitivity) than the coaxial stacks mediated by noncanonical base pairs (55.9% PPV, 36.5% sensitivity). It is also shown that the prediction accuracy does not show any obvious trend with multibranch loop complexity as measured by three different parameters.  相似文献   

17.
Predicting Ion Binding Properties for RNA Tertiary Structures   总被引:1,自引:0,他引:1  
Recent experiments pointed to the potential importance of ion correlation for multivalent ions such as Mg2+ ions in RNA folding. In this study, we develop an all-atom model to predict the ion electrostatics in RNA folding. The model can treat ion correlation effects explicitly by considering an ensemble of discrete ion distributions. In contrast to the previous coarse-grained models that can treat ion correlation, this new model is based on all-atom nucleic acid structures. Thus, unlike the previous coarse-grained models, this new model allows us to treat complex tertiary structures such as HIV-1 DIS type RNA kissing complexes. Theory-experiment comparisons for a variety of tertiary structures indicate that the model gives improved predictions over the Poisson-Boltzmann theory, which underestimates the Mg2+ binding in the competition with Na+. Further systematic theory-experiment comparisons for a series of tertiary structures lead to a set of analytical formulas for Mg2+/Na+ ion-binding to various RNA and DNA structures over a wide range of Mg2+ and Na+ concentrations.  相似文献   

18.
本文建立了一个最新的蛋白质亚线粒体定位数据集,包含4个亚线粒体定位的1 293条序列,结合基因本体(GO)信息和同源信息对线粒体蛋白质进行特征提取,利用支持向量机算法建立分类器,经Jackknife检验,对于4个亚线粒体位置的总体预测准确率为93.27%,其中3个亚线粒体位置的总体预测准确率为94.73%.  相似文献   

19.
Computational methods for predicting drug-target interactions have become important in drug research because they can help to reduce the time, cost, and failure rates for developing new drugs. Recently, with the accumulation of drug-related data sets related to drug side effects and pharmacological data, it has became possible to predict potential drug-target interactions. In this study, we focus on drug-drug interactions (DDI), their adverse effects () and pharmacological information (), and investigate the relationship among chemical structures, side effects, and DDIs from several data sources. In this study, data from the STITCH database, from drugs.com, and drug-target pairs from ChEMBL and SIDER were first collected. Then, by applying two machine learning approaches, a support vector machine (SVM) and a kernel-based L1-norm regularized logistic regression (KL1LR), we showed that DDI is a promising feature in predicting drug-target interactions. Next, the accuracies of predicting drug-target interactions using DDI were compared to those obtained using the chemical structure and side effects based on the SVM and KL1LR approaches, showing that DDI was the data source contributing the most for predicting drug-target interactions.  相似文献   

20.
《Seminars in Virology》1997,8(3):153-165
RNA molecules fold into specific base-paired conformations that contain single-stranded regions, A-form double helices, hairpin loops, internal loops, bulges, junctions, pseudoknots, kissing hairpins, and so forth. These structural motifs are recognized by proteins, other RNAs, and other parts of the same RNA. The interactions of these structural elements are crucial to the biological functions of the RNA molecules. We describe the different motifs and discuss their thermodynamic stabilities relative to single strands of RNA. The stabilities determine under what conditions they occur and whether they change when interacting with proteins or other ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号