首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The present studies examined some of the properties of Cl channels in renal outer medullary membrane vesicles incorporated into planar lipid bilayers. The predominant channel was anion selective having aP Cl/P K ratio of 10 and a unit conductance of 93 pS in symmetric 320mm KCl. In asymmetric KCl solutions, theI-V relations conformed to the Goldman-Hodgkin-Katz equation. Channel activity was voltage-dependent with a gating charge of unity. This voltage dependence of channel activity may account, at least in part, for the striking voltage dependence of the basolateral membrane Cl conductance of isolated medullary thick ascending limb segments. The Cl channels incorporated into the planar bilayers were asymmetrical: thetrans surface was sensitive to changes in ionized Ca2+ concentrations and insensitive to reducing KCl concentrations to 10mm, while thecis side was insensitive to changes in ionized Ca2+ concentrations, but was inactivated by reducing KCl concentrations to 50mm.  相似文献   

2.
Summary The plant pathogenic bacteriumClavibacter michiganense ssp. nebraskense secretes an anion channel forming activity (CFA) into the culture fluid. The CFA inserts spontaneously into planar lipid membranes when culture fluid of this species is added to the aqueous phase of the bilayer chamber. The channels formed are highly anion selective. The conductance decreases for larger anions (Cl>SCN>SO 4 2– ) and is practically zero for gluconate. The channels show a unique voltage dependence : (i) The single-channel conductance increases linearly with voltage up to 200 mV saturating at 250 mV with 25±1 pS (300mm KCl). The channel is closed at negative voltage relative to the side of insertion (diode-typeI–V curve). (ii) The average number of open channels also increases with voltage. The Poisson distribution of channel numbers indicates independent opening of the channels.Channel activity can be abolished by protease treatment of the planar bilayer. The channels can be blocked by indanyloxyacetic acid (IAA-94) and by pH>10. The CFA was purified yielding one major band on the SDS gel with a relative molecular mass of 65,000. The putative involvement of the CFA in the toxicity of this plant pathogen is discussed and compared to other toxins like colicins and to the diphtheria toxin group.  相似文献   

3.
Summary Endocytotic vesicles from rat kidney cortex, isolated by differential centrifugation and enriched on a Percoll gradient, contain both an electrogenic H+ translocation system and a conductive chloride pathway. Using the dehydration/rehydration method, we fused vesicles of enriched endosomal vesicle preparations and thereby made them accessible to the patch-clamp technique. In the fused vesicles, we observed Cl channels with a single-channel conductance of 73±2 pS in symmetrical 140mm KCl solution (n=25). The current-voltage relationship was linear in the range of –60 to +80 mV, but channel kinetic properties dependended on the clamp potential. At positive potentials, two sublevels of conductance were discernible and the mean open time of the channel was 10–15 msec. At negative voltages, only one substate could be resolved and the mean open time decreased to 2–6 msec. Clamp voltages more negative than –50 mV caused reversible channel inactivation. The channel was selective for anions over cations. Ion substitution experiments revealed an anion permeability sequence of Cl=Br=I>SO 4 2– F. Gluconate, methanesulfonate and cyclamate were impermeable. The anion channel blockers 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, 1.0mm) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 0.1mm) totally inhibited channel activity. Comparisons with data obtained from radiolabeled Cl-flux measurements and studies on the H+ pump activity in endocytotic vesicle suspensions suggest that the channel described here is involved in maintenance of electroneutrality during ATP-driven H+ uptake into the endosomes.  相似文献   

4.
Summary We examined the interactions of cAMP-dependent protein kinase and varying aqueous Cl concentrations in modulating the activity of Cl channels obtained by fusing basolaterally enriched renal outer medullary vesicles into planar lipid bilayers. Under the present experimental conditions, thecis andtrans solutions face the extracellular and intracellular aspects of these Cl channels, respectively. Raising thetrans Cl concentration from 2 to 50mm increased the channel open-time probability, raised the unit channel conductance, and affected the voltage-independent determinant (G) of channel activity but not the gating charge (Winters, C.J., Reeves, W.B., Andreoli, T.E. 1990.J. Membrane Biol. 118:269–278). With 2mm trans KCl,trans addition of the catalytic subunit of PKA (C-PKA) plus ATP increased channel open-time probability and altered the voltage-independent determinant of channel activity without affecting either unit channel conductance or gating charge. The effect was ATP specific, did not occur with (C-PKA plus ATP) addition tocis solutions, and was abolished by denaturing C-PKA. Finally, (C-PKA plus ATP) activation of channel activity was not detected with relatively high (50mm)trans Cl concentrations. These data indicate that (C-PKA plus ATP) might modulate Cl channel activity by phosphorylation at or near the Cl-sensitive site on the intracellular face of these channels.  相似文献   

5.
Summary We evaluated the effects of vawrying aqueous Cl concentrations, and of the arginyl- and lysyl-specific reagent phenylglyoxal (PGO), on the properties of Cl channels fused from basolaterally enriched renal medullary vesicles into planar lipid bilayers. The major channel properties studied were the anion selectivity sequence, anionic requirements for, channel activity. and the efects of varying Cl concentrations and/or PGO on the relation between holding voltageV H -mV) and open-time probability (P o).Reducingcis Cl concentrations, in the range 50–320mm, produced a linear reduction in fractional open time (P v) with a half-maximal reduction inP o atcis Cl170mM. Channel activity was sustained by equimolar replacement ofcis Cl with F, but not with impermeant isethionate. Fortrans solutions, the relation between Cl concentration andP 0 at 10mm Cl. Reducingcis Cl had no effect on the gating charge (Z) for channel opening, but altered significantly the voltage-independent, energy (G) for channel opening.Phenylglyoxal (PGO) reducedZ and altered G for Cl channel activity when added tocis, but nottrans solutions, Furthermore, in the presence ofcis PGO, reducing thecis Cl concentration had no effect onZ but altered G. Thus we propose thatcis PGO and,cis Cl concentrations affect separate sites determining channel activity at the extracellular faces of, these Cl channels.  相似文献   

6.
Summary Cl channels from basolaterally-enriched rabbit outer renal medullary membranes are activated either by increases in intracellular Cl activity or by intracellular protein kinase A (PKA). Phosphorylation by PKA, however, is not obligatory for channel activity since channels can be activated by intracellular Cl in the absence of PKA. The PKA requirement for activation of Cl channels in certain secretory epithelia is, in contrast, obligatory. In the present studies, we examined the effects of PKA and intracellular Cl concentrations on the properties of Cl channels obtained either from basolaterally-enriched vesicles derived from highly purified suspensions of mouse medullary thick ascending limb (mTALH) segments, or from apical membrane vesicles obtained from two secretory epithelia, bovine trachea and rabbit small intestine. Our results indicate that the Cl channels from mTALH suspensions were virtually identical to those previously described from rabbit outer renal medulla. In particular, an increase in intracellular (trans) Cl concentration from 2 to 50 mm increased both channel activity (P o) and channel conductance (g Cl, pS). Likewise, trans PKA increased mTALH Cl channel activity by increasing the activity of individual channels when the trans solutions were 2 mm Cl. Under the latter circumstance, PKA did not activate quiescent channels, nor did it affect g Cl. Moreover, when mTALH Cl channels were inactivated by reducing cis Cl concentrations to 50 mm, cis PKA addition did not affect P o. These results are consistent with the view that these Cl channels originated from basolateral membranes of the mTALH.Cl channels from apical vesicles from trachea and small intestine were completely insensitive to alterations in trans Cl concentrations and demonstrated markedly different responses to PKA. In the absence of PKA, tracheal Cl channels inactivated spontaneously after a mean time of 8 min; addition of PKA to trans solutions reactivated these channels. The intestinal Cl channels did not inactivate with time. Trans PKA addition activated new channels with no effect on basal channel activity. Thus the regulation of Cl channel activity by both intracellular Cl and by PKA differ in basolateral mTALH Cl channels compared to apical Cl channels from either the tracheal or small intestine.We acknowledge the able technical assistance of Steven D. Chasteen. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veterans Administration Merit Review Grants to T.E. Andreoli and to W.B. Reeves. C.J. Winters is a Veterans Administration Associate Investigator.  相似文献   

7.
Summary Chloride channels were detergent-extracted fromTorpedo electroplax plasma membrane vesicles and reconstituted into liposomes by rapid detergent removal and a freeze-thawsonication procedure. Concentrative uptake of36Cl, driven by a Cl gradient was used to determine conductance properties of reconstituted channels. Chloride flux assayed by this method is strongly selective for Cl over cations, is blocked by SCN, inactivated by treatment with DIDS, and exhibits an anion selectivity sequence Cl>Br>F>SO 4 2– , as does the voltagegated Cl channel fromTorpedo observed in planar lipid bilayers. The channels are localized to the noninnervated face of the electrocyte, and a novel trapped-volume method is used to estimate a channel density on the order of 500 pmol/mg protein. An initial fractionation of the membrane extract by anion exchange chromatography yields fivefold enrichment of the channel activity.  相似文献   

8.
Many mammalian cells regulate their volume by the osmotic movement of water directed by anion and cation flux. Ubiquitous volume-dependent anion currents permit cells to recover volume after swelling in response to a hypotonic environment. This study addressed competition between glutamate (Glu) and Cl permeation in volume-activated anion currents in order to provide insight into the ionic requirements for volume regulation, volume-dependent anion channel activity and to the architecture of the channel pore. The effect of changing the intracellular molar fraction (MF) of Glu and Cl on conductance and relative anion permeability was evaluated as a function of the extracellular permeant anion and/or the ionic strength. Relative permeability of Glu to Cl was determined by measuring reversal potentials under defined ionic conditions. Under conditions with high (150 mM) or low (50 mM) ionic strength solutions on both sides of the membrane, Cl was always more permeable than Glu. When a transmembrane ionic strength gradient (150 mM extracellular: 50 mM intracellular) was set to drive water into the cell, and in the presence of extracellular Cl, Glu became up to 16-fold more permeable than Cl. Replacement of extracellular Cl with Glu abolished this effect. These results indicate that it is possible for Glu to move into the extracellular environment during volume-regulatory events and they support the emerging role of glutamate as a modulator of anion channel activity.  相似文献   

9.
Summary Cl transport in apical membrane vesicles derived from bovine tracheal epithelial cells was studied using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl) quinolinium. With an inwardly directed 50 mM Cl gradient at 23°C, the initial rate of Cl entry (J Cl) was increased significantly from 0.32±0.12 nmol · sec–1 · mg protein–1 (mean±sem) to 0.50±0.07 nmol · sec–1 · mg protein–1 when membrane potential was changed from 0 to +60 mV with K/valinomycin. At 37°C, with membrane potential clamped at 0 mV, there was a 34±7% (n=5) decrease inJ Cl from a control value of 0.37±0.03 nmol · sec–1 · mg protein–1 upon addition of 0.2mm diphenylamine-2-carboxylate. The following did not alterJ Cl significantly (J Cl values gives as percent change from control): 50mm cis Na (–1±5%), 0.1mm furosemide (–3±4%), 0.1mm furosemide in the presence of 50mm cis Na (–5±2%), 0.1mm H2DIDS (–18±9%), a 1.5 pH unit inwardly directed H gradient (–7±7%), and 0.1mm H2DIDS in the presence of a 1.5 unit pH gradient (4±18%). With inward 50mm anion gradients, the initial rates of Br and I entry (J Br andJ 1, respectively) were not significantly different fromJ Cl.J Cl was a saturable function of Cl concentration with apparentK d of 24mm and apparentV max of 0.54 nmol · sec–1 · mg protein–1. Measurement of the temperature dependence ofJ Cl yielded an activation energy of 5.0 kcal/mol (16–37°C). These results demonstrate that Cl transport in tracheal apical membrane vesicles is voltage-dependent and inhibited by diphenylamine-2-carboxylate. There is no significant contribution from the Na/K/2Cl, Na/Cl, or Cl/OH(H) transporters. The conductive pathway does not discriminate between Cl, Br, and I and is saturable. The low activation energy supports a pore-type mechanism for the conductance.  相似文献   

10.
Outwardly rectifying chloride channels in lymphocytes   总被引:5,自引:0,他引:5  
Summary Outwardly rectifying Cl channels in cultured human Jurkat T-lymphocytes were activated by excising a patch of membrane using the inside-out (i/o) patch-clamp configuration and holding at depolarized voltages for prolonged periods of time (1–6 min at +80 mV, 20°C). The single-channel current at +80 mV was 4.5 ± 0.3 pA and at –80 mV, it was 1.0 ± 0.4 pA. After activation, the probability of being open (P 0)for the lymphocyte channel was voltage independent. Activation of the Cl channel in lymphocytes was temperature dependent. Nineteen percent of i/o recordings from lymphocytes made at 20°C exhibited Cl channel activity. In contrast, 49% of recordings made at 30°C showed channel activity. The number of channels in an active patch was not significantly different at the two temperatures. Channel activation in excised, depolarized patches also occurred 20-fold faster at 30°C than at 20°C. There was no marked change in the single-channel conductance at 30°C. Open-channel conductance was blocked by 200 m indanyloxyacetic acid (IAA) or 1 mm SITS when applied to the intracellular side of the patch. The characteristics of this channel are similar to epithelial outwardly rectifying Cl channels thought to be involved in fluid secretion  相似文献   

11.
Summary A large conductance multi-state channel was identified and characterized in single channel recordings from cell-attached and excised patches of the human colonic tumor cell line, T84. The channel activity was dependent on the presence of both permeable cations and anions. In Na+-free symmetrical Cl solutions or Cl-free symmetrical Na+ solutions the channel was inactive. Addition of 5mm NaCl (Nal or KCl) induced channel activity. The selectivity sequence obtained from the shift in reversal potential was I(1.9) > Cl(1) > Na+(0.5) > K+(0.3). SO 4 2– , SCN (thiocyanate) and NMDG+ were impermeant. Multiple subconductance states were identified at all voltages explored (±90 mV). The minimum conductance encountered in symmetrical 100mm NaCl was a 15 pS substate, the maximum, 210 pS. The channel appeared to be composed of multiples of the 15 pS subunits which were reversibly blocked by the loop diuretic bumetanide (5 m).The authors wish to thank Morris Priddy and Charley Roberson for excellent technical assistance and Linda Pai and Steve Valder for participation in the early experiments. This study was supported by UPSH R01-DK39617 to A. Beaudet. L.V. was supported by a one-year fellowship from the Cystic Fibrosis Foundation.  相似文献   

12.
Summary This report details preliminary findings for ion channels in the plasma membrane of protoplasts derived from the cotyledons ofAmaranthus seedlings. The conductance properties of the membrane can be described almost entirely by the behavior of two types of ion channel observed as single channels in attached and detached patches. The first is a cation-selective outward rectifier, and the second a multistate anion-selective channel which, under physiological conditions, acts as an inward rectifier.The cation channel has unit conductance of approx. 30 pS (symmetrical 100 K+) and relative permeability sequence K+>Na+>Cl (10.160.03); whole-cell currents activate in a time-dependent manner, and both activation and deactivation kinetics are voltage dependent. The anion channel opens for hyperpolarized membrane potentials, has a full-level conductance of approx. 200 pS and multiple subconductance states. The number of sub-conductances does not appear to be fixed. When activated the channel is open for long periods, though shuts if the membrane potential (V m ) is depolarized; at millimolar levels of [Ca2+]cyt this voltage dependency disappears. Inward current attributable to the anion channel is not observed in whole-cell recordings when MgATP (2mm) is present in the intracellular solution. By contrast the channel is active in most detached patches, whether MgATP is present or not on the cytoplasmic face of the membrane. The anion channel has a significant permeability to cations, the sequence being NO 3 >Cl>K+>Aspartate (2.0410.18 to 0.090.04). The relative permeability for K+ decreased at progressively lower conductance states. In the absence of permeant anions this channel could be mistaken for a cation inward rectifier. The anion and cation channels could serve to clampV m at a preferred value in the face of events which would otherwise perturbV m .  相似文献   

13.
Summary The properties of an anion-selective channel observed in basolateral membranes of microdissected, collagenase-treated, cortical thick ascending limbs of Henle's loop from mouse kidney were investigated using patch-clamp single-channel recording techniques. In basal conditions, single Cl currents were detected in 8% of cell-attached and excised, inside-out, membrane patches whereas they were observed in 24% of cell-attached and 67% of inside-out membrane patches when tubular fragments were preincubated with Forskolin (10–5 m) or 8-bromo-cAMP (10–4 m) and isobutylmethylxanthine (10–5 m). The channel exhibited a linear current-voltage relationship with conductances of about 40 pS in both cell-attached and cell-free membrane configurations. AP Na + P Cl ratio of 0.05 was estimated in the presence of a 142/42mm NaCl concentration gradient applied to inside-out membrane patches. Anionic selectivity of the channel followed the sequence Cl>Br>No 3 F; gluconate was not a permeant species. The open-state probability of the channel increased with membrane depolarization in cell-attached, i.e.,in situ membrane patches. In excised, inside-out, membrane patches, the channel was predominantly open with the open-state probability close to 0.8 over the whole range of potentials tested (–60 to +60 mV). The channel activity was not a function of internal calcium concentration between 10–9 and 10–3 m. We suggest that this Cl channel, whose properties are distinct from those in other epithelia, could account for the well-documented conductance which mediates Cl exit in the basolateral step of NaCl absorption in thick ascending limb of Henle's loop.  相似文献   

14.
A unique property of basolateral membrane Cl channels from the mTAL is that the Cl concentration facing the intracellular aspects of these channels is a determinant of channel open time probability (P 0 ). The K 1/2 for maximal activation of P 0 by Cl facing intracellular domains of these channels is 10 mm Cl. The present experiments evaluated the nature of these Cl-interactive sites. First, we found that the impermeant anion isethionate, when exposed to intracellular Cl channel faces, could augment P 0 with a K 1/2 in the range of 10 mm isethionate without affecting conductance (g Cl, pS). Second, pretreatment of the solutions facing the intracellular aspects of the channels with either 1 mm phenylglyoxal (PGO), an arginine-specific reagent, or the lysine/terminal amine reagent trinitrobenzene sulfonic acid (TNBS, 1 mm), prevented the activation of P 0 usually seen when the Cl concentration of solutions facing intracellular channel domains was raised from 2 to 50 mm. However, when the Cl channel activity was increased by first raising the Cl concentration bathing intracellular channel faces from 2 to 50 mm, subsequent addition of either PGO or TNBS to solutions bathing intracellular Cl channel faces had no effect on P 0 . We conclude that the intracellular aspects of these Cl channels contain Cl-interactive loci (termed [Cl] i ) which are accessible to impermeant anions in intracellular fluids and which contain arginineand lysine-rich domains which can be inactivated, at low ambient Cl or isethionate concentrations, by interactions with PGO or TNBS.We acknoeledge the able technical assistance of Anna Grace Stewart. Clementine M. Whitman provided her customary excellent secretarial assistance. This work was supported by Veteterans Administration Merit Review Grants to T. E.Andreoli and to W. B. Reeves. C. J. Winters is a Veterans Administration Associate Investigator.  相似文献   

15.
The endogenous volume-regulated anion channel (VRAC) from HEK293 cells was pharmacologically characterized using the whole-cell patch-clamp technique. Under isotonic conditions a small (1.3 nS), Ca2+-independent Cl conductance was measured. However, swelling at 75% tonicity activated a VRAC identified as an outward-rectifying anion current (P l > P Cl > P gluconate), which was ATP-dependent and showed inactivation at positive potentials. Activation of this current followed a sigmoid time course, reaching a plateau conductance of 42.6 nS after 12–15 min (t 1/2 = 7 min). The pharmacology of this VRAC was investigated using standard Cl-channel blockers (NPPB, DIDS, and tamoxifen) as well as a new group (acidic di-aryl ureas) of Cl-channel blockers (NS1652, NS3623, NS3749, and NS3728). The acidic di-aryl ureas were originally synthezised for inhibition of the human erythrocyte Cl conductance in vivo. NS3728 was the most potent VRAC blocker in this series (IC 50 = 0.40 µM) and even more potent than tamoxifen (2.2 µM). NS3728 accelerated channel inactivation at positive potentials. These results show that acidic di-aryl ureas constitute a promising starting point for the synthesis of potent inhibitors of VRAC.  相似文献   

16.
Single anion channels reconstituted from cardiac mitoplasts   总被引:4,自引:0,他引:4  
Ion channels from sheep cardiac mitoplast (inverted inner mitochondrial membrane vesicle) preparations were incorporated into voltage-clamped planar lipid bilayers. The appearance of anion rather than cation channels could be promoted by exposing the bilayers to osmotic gradients formed by Cl salts of large, relatively imperment, cations at a pH of 8.8. Two distinct activities were identified. These comprised a multisubstate anion channel of intermediate conductance (∼60 pS in 300vs. 50mm choline Cl, ∼100 pS in symmetric 150mm KCl), and a lower-conductance anion channel (∼25 or ∼50 pS in similar conditions), which only displayed two well-defined substates, at ∼25 and ∼50% of the fully open state. The larger channels were not simple multiples of the lower-conductance channels, but both discriminated poorly, and to a similar extent, between anions and cations (PCl /Pcholine + ∼12, PCl /PK +∼8). The lower-conductance channel was only minimally selective between different anions (PNO 3 (1.0)=PCl >PBr >PI >PSCN (0.8)), and its conductance failed to saturate even in high (>1.0 M) activities of KCl. The channels were not obviously voltage dependent, and they were unaffected by 0.5 mM SITS, H2O2, propranolol, quinine or amitriptyline, or by 2 mM ATP, or by variations in pH (5.5–8.8). Ca2+ and Mg2+ did not alter single channel activity, but did modify single current amplitudes in the lower-conductance channel. This effect, together with voltage-dependent substate behavior, is described in the following paper.  相似文献   

17.
The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pH cis ) and luminal pH (pH trans ) was investigated using the lipid bilayer-vesicle fusion technique. Low pH cis 6.75–4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pH cis 7.26–7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65–75 pS) whereas at low pH cis 6.75–4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5–40 pS). Similarly, low pH trans 4.07, but not pH trans 6.28, modified the activity of SCl channels. The effects of low pH cis are pronounced at 10−3 and 10−4 m [Ca2+] cis but are not apparent at 10−5 m [Ca2+] cis , where the subconductances of the channel are already prominent. Low pH cis -induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pH cis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels. Received: 20 May 1998/Revised: 24 September 1998  相似文献   

18.
Summary Rabbit cardiac muscle sarcoplasmic reticulum (SR) was isolated and separated into ryanodine-sensitive and-insensitive fractions (L.R. Jones and S.E. Cala,J. Biol. Chem. 256:11809–11818, 1981). Vesicles of cardiac SR were incorporated into planar phospholipid bilayers by fusion and the channel activity of the membrane studied under voltage-clamp conditions (C. Miller,J. Membrane Biol. 40: 1–23, 1978). Both fractions contain a monovalent cation-selective three-state channel. In the presence of 75mm K2SO4, the fully open state () conductance of this channel is 157.2±30 pS and the sub-state () conductance is 100.7±21 pS. Both open states display the same selectivity sequence for monovalent cations, i.e. K+>NH 4 + >Rb+>Na+>Li+ and may be blocked by the skeletal muscle relaxants decamethonium and hexamethonium. Block occurs when the compounds are added to either side of the membrane. The properties of the cardiac SR cation channel are compared with those of the previously reported monovalent cation-selective channels of mammalian and amphibian skeletal muscle SR.  相似文献   

19.
We have characterized a voltage-sensitive chloride channel from cardiac sarcoplasmic reticulum (SR) following reconstitution of porcine heart SR into planar lipid bilayers. In 250 mm KCl, the channel had a main conductance level of 130 pS and exhibited two substrates of 61 and 154 pS. The channel was very selective for Cl over K+ or Na+ ( and ). It was permeable to several anions and displayed the following sequence of anion permeability: SCN > I > NO 3 Br > Cl > f > HCOO. Single-channel conductance saturated with increasing Cl concentrations (K m= 900 mm and max = 488 pS). Channel activity was voltage dependent, with an open probability ranging from 1.0 around 0 mV to 0.5 at +80 mV. From –20 to +80 mV, channel gating was time-independent. However, at voltages below –40 mV the channel entered a long-lasting closed state. Mean open times varied with voltage, from 340 msec at –20 mV to 6 msec at +80 mV, whereas closed times were unaffected. The channel was not Ca2+-dependent. Channel activity was blocked by disulfonic stilbenes, arylaminobenzoates, zinc, and cadmium. Single-channel conductance was sensitive to trans pH, ranging from 190 pS at pH 5.5 to 60 pS at pH 9.0. These characteristics are different from those previously described for Cl channels from skeletal or cardiac muscle SR.We thank Dr. Barry Pallotta for help with open and closed intervals analysis and Dr. Gerhard Meissner for his suggestions for the preparation of cardiac sarcoplasmic reticulum membranes. This work was supported by a grant from the National Institutes of Health to R.L.R. and a Student Grant-in-Aid from the American Heart Association, North Carolina affiliate to C.T. R.L.R. is an Established Investigator of the American Heart Association.  相似文献   

20.
Summary Ionic channels in a human monocyte cell line (U937) were studied with the inside-out patch-clamp technique. A Ca2+-activated K+ channel and three Cl-selective channels were observed. The Ca2+-activated K+ channel had an inward-rectifying current-voltage relationship with slope conductance of 28 pS, and was not dependent on membrane potential. Among the three Cl channels, and outward-rectifying 28-pS channel was most frequently observed. The permeability ratio (Cl/Na+) was 4–5 and CH3SO 4 was also permeant. The channel became less active with increasing polarizations in either direction, and was inactive beyond ±120 mV. The channel, observed as bursts, occasionally had rapid events within the bursts, suggesting the presence of another mode of kinetics. Diisothiocyanatostilbene-disulfonic acid (DIDS) blocked the channel reversibly in a dose-dependent manner. The second 328-pS Cl channel had a linear currentvoltage relationship and permeability ratio (Cl/Na+) of 5–6. This channel became less active with increasing polarizations and inactive beyond ±50 mV. DIDS blocked the channel irreversibly. The channel had multiple subconductance states. The third 15-pS Cl channel was least frequently observed and least voltage sensitive among the Cl channels. Intracellular Ca2+ or pH affected none of the three Cl channels. All three Cl channels had a latent period before being observed, suggesting inhibitory factor(s) presentin situ. Activation of the cells with interferon-, interferon-A or 12-O-tetradecanoylphorbol-13-acetate (TPA) caused no change in the properties on any of the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号