首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

3.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

4.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

5.
6.
Dynamics of rhythmic oscillations in the activity of arylalkylamine N-acetyltransferase (AA-NAT, the penultimate and key regulatory enzyme in melatonin biosynthesis) were examined in the retina and pineal gland of turkeys maintained for 7 days in the environment without daily light-dark (LD) changes, namely constant darkness (DD) or continuous light (LL). The two tissues differentially responded to constant environment. In the retina, a circadian AA-NAT activity rhythm disappeared after 5 days of DD, while in the pineal gland it persisted for the whole experiment. No circadian rhythm was observed in the retinas of turkeys exposed to LL, although rhythmic oscillations in both AA-NAT and melatonin content were found in the pineal glands. Both tissues required one or two cycles of the re-installed LD for the full recovery of the high-amplitude AA-NAT rhythm suppressed under constant conditions. It is suggested that the retina of turkey is less able to maintain rhythmicity in constant environment and is more sensitive to changes in the environmental lighting conditions than the pineal gland. Our results indicate that, in contrast to mammals, pineal glands of light-exposed galliformes maintain the limited capacity to rhythmically produce melatonin.  相似文献   

7.
(S)-adenosylmethionine (SAM) is a critical element of melatonin synthesis as the methyl donor in the last step of the pathway, the O-methylation of N-acetyl 5-hydroxytryptamine by hydroxyindole-O-methyltransferase. The activity of the enzyme that synthesizes SAM, methionine adenosyltransferase (MAT), increases 2.5-fold at night in the pineal gland. In this study, we found that pineal MAT2A mRNA and the protein it encodes, MAT II, also increase at night, suggesting that the increase in MAT activity is caused by an increase in MAT II gene products. The night levels of MAT2A mRNA in the pineal gland were severalfold higher than in other neural and non-neural tissues examined, consistent with the requirement for SAM in melatonin synthesis. Related studies indicate that the nocturnal increase in MAT2A mRNA is caused by activation of a well described neural pathway that mediates photoneural-circadian regulation of the pineal gland. MAT2A mRNA and MAT II protein were increased in organ culture by treatment with norepinephrine (NE), the sympathetic neurotransmitter that stimulates the pineal gland at night. NE is known to markedly elevate pineal cAMP, and here it was found that cAMP agonists elevate MAT2A mRNA levels by increasing MAT2A mRNA synthesis and that drugs that block cAMP activation of cAMP dependent protein kinase block effects of NE. Therefore, the NE-cAMP dependent increase in pineal MAT activity seems to reflect an increase in MAT II protein, which occurs in response to cAMP-->protein kinase-dependent increased MAT2A expression. The existence of this MAT regulatory system underscores the importance that MAT plays in melatonin biogenesis. These studies also point to the possibility that SAM production in other tissues might be regulated through cAMP.  相似文献   

8.
More than 100 genes causing inherited retinal diseases have been mapped to chromosomal locations, but less than half of these genes have been cloned. Mutations in many retina/pineal-specific genes are known to cause inherited retinal diseases. Examples include mutations in arrestin, rhodopsin kinase, and the cone-rod homeobox gene, CRX. To identify additional candidate genes for inherited retinal disorders, novel retina/pineal-expressed EST clusters were identified from the TIGR Human Gene Index database and mapped to specific chromosomal sites. After known human gene sequences were excluded, and repeat sequences were masked, 26 novel retina and pineal gland cDNA clusters were identified. The retinal expression of each novel EST cluster was confirmed by PCR assay of a retinal cDNA library, and each cluster was localized in the genome using the GeneBridge 4.0 radiation hybrid panel. In silico expression data from the TIGR database suggest that these EST clusters are retina/pineal-specific or predominantly expressed in these tissues. This combination of database analysis and laboratory investigation has localized several EST clusters that are potential candidates for genes causing inherited retinopathy.  相似文献   

9.
S-Antigen is a soluble cell protein unique to the retina and pineal gland. In the former, it is a well-characterized molecule that participates in light-induced signal transduction in photoreceptor cells. In the latter, the functional role is presently not known. The expression of S-antigen and its mRNA was examined in the rat retina and pineal gland throughout the diurnal cycle and with light interruption of the dark cycle. A cDNA for rat S-antigen was isolated from a pineal gland library to examine the mRNAs. A 1.7-kb mRNA for S-antigen was observed in both the pineal gland and the retina. Retinal S-antigen mRNA was expressed throughout the diurnal cycle and increased with light interruption of the dark cycle. In contrast, pineal gland S-antigen mRNA levels were detectable only during the dark and were absent preceding and during light. The phenotypic expression of immunoreactive S-antigen, identified with two S-antigen monoclonal antibodies (MAbs), MAb A9C6 and MAb C10C10, was analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel (PAGE) and isoelectric focusing (IEF) electrophoresis. Immunoblot analysis of gels after SDS-PAGE revealed a single 46-kDa protein in retina. In contrast, two bands of approximately 43 and 46 kDa were identified in the pineal gland. Immunoblots of the retinal extracts separated by IEF electrophoresis revealed five S-antigen isomers, which vary quantitatively throughout the diurnal cycle and when light interrupted the dark cycle. Immunoblots of the pineal gland samples separated by IEF electrophoresis indicated that the pineal gland possesses four pineal gland-specific forms of S-antigen in addition to the five forms present in the retina. The differences observed in the mRNA and protein analyses suggest tissue-specific structural components for S-antigen in the retina and pineal gland that are not regulated in the same manner.  相似文献   

10.
B Liu  J P Burbach 《Peptides》1988,9(5):973-978
Vasopressin levels and vasopressin-converting aminopeptidase activity were measured in the rat pineal gland during the 24 hr light-dark cycle. A rhythmic variation in peptide levels and peptidase activity occurred. At the onset of light at 6.00 hr, the peptidase displayed a significant, short-lasting (approximately 3 hr) increase of about 35% in activity, while a decrease of 28% in pineal vasopressin levels was observed. The changes in peptidase activity and peptide level were not triggered by light per se, since they persisted to occur at the same time point in animals which were not exposed to light, indicating the circadian nature of the rhythmicity. These changes were specific to the pineal gland, since other tissues, like hippocampus and pituitary gland, did not show these daily variations. The data suggest a relationship between vasopressin levels and vasopressin-converting aminopeptidase activity.  相似文献   

11.
Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.  相似文献   

12.
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retinal pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.  相似文献   

13.
The ATP.Mg-dependent protein phosphatase activating factor (protein kinase FA) was identified to exist in bovine retina. Furthermore, rhodopsin, the visual light pigment associated with rod outer segments in retina, could be well phosphorylated by kinase FA to about 0.9 mol of phosphates per mol of protein. Moreover, more than 90% of the phosphates in [32P]-rhodopsin could be completely removed by ATP.Mg-dependent protein phosphatase and the rhodopsin phosphatase activity was strictly kinase FA-dependent. Taken together, the results provide initial evidence that a cyclic phosphorylation-dephosphorylation of rhodopsin can be controlled by the retina-associated protein kinase FA, representing an efficient cyclic cascade mechanism possibly involved in the rapid regulation of rhodopsin function in retina.  相似文献   

14.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood.  相似文献   

15.
Bovine rod outer segment (ROS) cyclic GMP phosphodiesterase (PDE) could be activated about 6-fold by light, an effect that could be simulated by isolated bleached rhodopsin. About 90% of PDE activity in ROS could be extracted with 10 mM Tris-HCl, pH 7.5, but light is ineffective in activating the soluble enzyme. However, bleached rhodopsin could activate it in the presence of a very low concentration of ATP, strongly suggesting the mediation of rhodopsin in the light activation of the enzyme in ROS. Direct evidence is presented to suggest that the phosphorylation of opsin (bleached rhodopsin) is unrelated to the activation of PDE by bleached rhodopsin and ATP. The reconstitution of the light activation of PDE in a soluble system presented here opens up a new direction to future investigations on the mechanism of light regulation of cyclic GMP levels in retina and its implication in the photoreceptor function.  相似文献   

16.
effective pharmacological procedures are described which markedly increase activity of serotonin N-acetyltransferase (NAT), the key regulatory enzyme in melatonin biosynthesis, during the daytime (in light) and counteract suppressive effects of light on NAI activity at night in the hen retina and pineal gland. Of the tested compounds, and their combinations, the most effective were: “aminophylline + spiroperidol + alpha-methyl-p-tyrosine” for the retina, and “aminophylline + yohimbine (+ alpha-methyl-p-tyrosine)” for the pineal gland. The results give strong support to the concept that the dopaminergic (C2-receptor) and noradrenergic (alpha2-adrenergic receptor) mechanisms control NAT activity, and melatonin synthesis, in the hen retina and pineal gland, respectively.  相似文献   

17.
Abstract: We have previously shown that exposure of rats to constant light (LL) induced a decrease in NO synthase (NOS) activity in the pineal gland. We present here the evidence that chronic (5 days) norepinephrine (NE) or isoproterenol treatment prevents the effect of LL and enhances pineal NOS activity in LL animals. This effect of NE appears to be mediated by β-adrenoceptors, because it was not mimicked by the α-agonist phenylephrine. Pineal NOS activity was reduced in 16-h light/8-h dark animals treated for 4 days with the β-adrenergic antagonist propranolol but not with the α1-antagonist prazosin, indicating again an involvement of β-adrenergic receptor in the control of NOS. Treatment with adrenergic antagonists did not affect cortical NOS activity, suggesting that the control of NOS is different in these two tissues or that the pineal expresses a specific isoform of the enzyme. Taken together, these data suggest that NE controls NOS in the pineal gland through β-adrenergic receptors. To our knowledge, this represent the first demonstration of a regulation of NOS by a neurotransmitter in the CNS, as assayed under V max conditions.  相似文献   

18.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood. (Chronobiology International, 17(5), 599–612, 2000)  相似文献   

19.
In retinas and pineal glands of rat, rabbit and hen, activities of the penultimate (and key regulatory) enzyme in melatonin biosynthesis, serotonin N-acetyltransferase (NAT), display distinct diurnal variations, with high and low values during dark and light phase of a 12-h dark: 12-h light illumination cycle. Two-hour incubation (during daytime hours in light) of isolated pineal glands of the studied vertebrates, or the retinas, with 50 microM forskolin (plus 100 microM 3-isobutyl-1-methylxanthine, IBMX-a phosphodiesterase inhibitor), and 1 mM dibutyryl-cAMP, markedly increased the tissue NAT activity. The same procedures significantly enhanced the enzyme activity of rat retina in light, however, only during nighttime hours. The forskolin (+ IBMX)-induced increase of NAT activity in rat retina was significantly lower in a calcium-free medium, and substantially enhanced when calcium concentration was raised from 1.3 mM to 3.9 mM. Treatment of rats with IBMX or aminophylline, and rabbits with aminophylline, increased NAT activity in their pineal glands irrespective of the time of the day, whereas both phosphodiesterase inhibitors significantly increased the enzyme activity of rat retina only when injected during the subjective dark hours. It is concluded that, by analogy to vertebrate pineal gland, in vertebrate retina an increase of NAT activity (and consequently melatonin formation), stimulated both physiologically (i. e. at night), or pharmacologically, involves a cAMP- and calcium dependent process of the enzyme induction.  相似文献   

20.
Tissue distribution and developmental expression of protein kinase C isozymes   总被引:17,自引:0,他引:17  
Protein kinase C is a ubiquitous enzyme found in a variety of mammalian tissues and is especially highly enriched in brain and lymphoid organs. Based on biochemical and immunological analyses, we have identified three types of protein kinase C isozyme (designated types I-III) from rat brain. Monospecific antibodies against each of the protein kinase C isozymes were prepared for the determination of tissue distribution, subcellular localization, and developmental changes of these enzymes. The various protein kinase C isozymes were found to be distinctively distributed in different tissues: the type I enzyme in brain; the type II enzyme in brain, pituitary and pineal glands, spleen, thymus, retina, lung, and intestine; and the type III enzyme in brain, pineal gland, retina, and spleen. The rat brain enzymes were differentially distributed in different subcellular fractions. The type I enzyme appeared to be most lipophilic and was recovered mostly in the particulate fractions (80-90%) regardless of the EGTA- or Ca2+-containing buffer used in the homogenization. Significant amounts (30-40%) of the type II and III enzymes were recovered in the cytosolic fraction with EGTA-containing buffer. The expressions of different protein kinase C isozymes appear to be differently controlled during development. In rat brain, both type II and III enzymes were found to increase progressively from 3 days before birth up to 2-3 weeks of age and remained constant thereafter. However, the expression of the type I enzyme displayed a different developmental pattern; it was very low within 1 week, and an abrupt increase was observed between 2 and 3 weeks of age. In thymus, the type II enzyme was found to be maximal shortly after birth; whereas the same kinase in spleen was very low within 2 weeks of age, and a significant increase was observed between 2 and 3 weeks. These results demonstrate that protein kinase C isozymes are distinctively distributed in different tissues and subcellular locales and that their expressions are controlled differently during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号