首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) catalyses the branchpoint reaction of lysine biosynthesis in plants and microbes: the condensation of (S)-aspartate-beta-semialdehyde and pyruvate. The crystal structure of wild-type DHDPS has been published to 2.5A, revealing a tetrameric molecule comprised of four identical (beta/alpha)(8)-barrels, each containing one active site. Previous workers have hypothesised that the catalytic mechanism of the enzyme involves a catalytic triad of amino acid residues, Tyr133, Thr44 and Tyr107, which provide a proton shuttle to transport protons from the active site to solvent. We have tested this hypothesis using site-directed mutagenesis to produce three mutant enzymes: DHDPS-Y133F, DHDPS-T44V and DHDPS-Y107F. Each of these mutants has substantially reduced activity, consistent with the catalytic triad hypothesis. We have determined each mutant crystal structure to at least 2.35A resolution and compared the structures to the wild-type enzyme. All mutant enzymes crystallised in the same space group as the wild-type form and only minor differences in structure are observed. These results suggest that the catalytic triad is indeed in operation in wild-type DHDPS.  相似文献   

2.
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.  相似文献   

3.
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme in (S)-lysine biosynthesis and an important antibiotic target. All X-ray crystal structures solved to date reveal a homotetrameric enzyme. In order to explore the role of this quaternary structure, dimeric variants of Escherichia coli DHDPS were engineered and their properties were compared to those of the wild-type tetrameric form. X-ray crystallography reveals that the active site is not disturbed when the quaternary structure is disrupted. However, the activity of the dimeric enzymes in solution is substantially reduced, and a tetrahedral adduct of a substrate analogue is observed to be trapped at the active site in the crystal form. Remarkably, heating the dimeric enzymes increases activity. We propose that the homotetrameric structure of DHDPS reduces dynamic fluctuations present in the dimeric forms and increases specificity for the first substrate, pyruvate. By restricting motion in a key catalytic motif, a competing, non-productive reaction with a substrate analogue is avoided. Small-angle X-ray scattering and mutagenesis data, together with a B-factor analysis of the crystal structures, support this hypothesis and lead to the suggestion that in at least some cases, the evolution of quaternary enzyme structures might serve to optimise the dynamic properties of the protein subunits.  相似文献   

4.
The intracellular enzyme dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) from Pseudomonas aeruginosa is a potential drug target because it is essential for the growth of bacteria while it is absent in humans. Therefore, in order to design new compounds using structure based approach for inhibiting the function of DHDPS from P. aeruginosa (Ps), we have cloned, characterized biochemically and biophysically and have determined its three-dimensional structure. The gene encoding DHDPS (dapA) was cloned in a vector pET-28c(+) and the recombinant protein was overexpressed in the Escherichia coli host. The K(m) values of the recombinant enzyme estimated for the substrates, pyruvate and (S)-aspartate-β-semialdehyde [(S)-ASA] were found to be 0.90±0.13 mM and 0.17±0.02 mM, respectively. The circular dichroism studies showed that the enzyme adopts a characteristic β/α conformation which is retained up to 65°C. The fluorescence data indicated the presence of exposed tryptophan residues in the enzyme. The three-dimensional structure determination showed that DHDPS forms a homodimer which is stabilized by several hydrogen bonds and van der Waals forces at the interface. The active site formed with residues Thr44, Tyr107 and Tyr133 is found to be stereochemically suitable for catalytic function. It may be noted that Tyr107 of the catalytic triad belongs to the partner molecule in the dimer. The structure of the complex of PsDHDPS with (S)-lysine determined at 2.65 ? resolution revealed the positions of three lysine molecules bound to the protein.  相似文献   

5.
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine biosynthetic pathway. The tetrameric structure of DHDPS is thought to be essential for enzymatic activity, as isolated dimeric mutants of Escherichia coli DHDPS possess less than 2.5% that of the activity of the wild-type tetramer. It has recently been proposed that the dimeric form lacks activity due to increased dynamics. Tetramerization, by buttressing two dimers together, reduces dynamics in the dimeric unit and explains why all active bacterial DHDPS enzymes to date have been shown to be homo-tetrameric. However, in this study we demonstrate for the first time that DHDPS from methicillin-resistant Staphylococcus aureus (MRSA) exists in a monomer-dimer equilibrium in solution. Fluorescence-detected analytical ultracentrifugation was employed to show that the dimerization dissociation constant of MRSA-DHDPS is 33 nm in the absence of substrates and 29 nm in the presence of (S)-aspartate semialdehyde (ASA), but is 20-fold tighter in the presence of the substrate pyruvate (1.6 nm). The MRSA-DHDPS dimer exhibits a ping-pong kinetic mechanism (k(cat)=70+/-2 s(-1), K(m)(Pyruvate)=0.11+/-0.01 mm, and K(m)(ASA)=0.22+/-0.02 mm) and shows ASA substrate inhibition with a K(si)(ASA) of 2.7+/-0.9 mm. We also demonstrate that unlike the E. coli tetramer, the MRSA-DHDPS dimer is insensitive to lysine inhibition. The near atomic resolution (1.45 A) crystal structure confirms the dimeric quaternary structure and reveals that the dimerization interface of the MRSA enzyme is more extensive in buried surface area and noncovalent contacts than the equivalent interface in tetrameric DHDPS enzymes from other bacterial species. These data provide a detailed mechanistic insight into DHDPS catalysis and the evolution of quaternary structure of this important bacterial enzyme.  相似文献   

6.
Dihydrodipicolinate synthase (DHDPS) is a validated antibiotic target for which a new approach to inhibitor design has been proposed: disrupting native tetramer formation by targeting the dimer–dimer interface. In this study, rational design afforded a variant of Mycobacterium tuberculosis, Mtb-DHDPS-A204R, with disrupted quaternary structure. X-ray crystallography (at a resolution of 2.1 Å) revealed a dimeric protein with an identical fold and active-site structure to the tetrameric wild-type enzyme. Analytical ultracentrifugation confirmed the dimeric structure in solution, yet the dimeric mutant has similar activity to the wild-type enzyme. Although the affinity for both substrates was somewhat decreased, the high catalytic competency of the enzyme was surprising in the light of previous results showing that dimeric variants of the Escherichia coli and Bacillus anthracis DHDPS enzymes have dramatically reduced activity compared to their wild-type tetrameric counterparts. These results suggest that Mtb-DHDPS-A204R is similar to the natively dimeric enzyme from Staphylococcus aureus, and highlight our incomplete understanding of the role played by oligomerisation in relating protein structure and function.  相似文献   

7.
To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.  相似文献   

8.
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.  相似文献   

9.
Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.  相似文献   

10.
Escherichia coli dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a natively homotetrameric enzyme was converted to a monomeric species through the introduction of destabilising interactions at two different subunit interfaces allowing exploration of the roles of the quaternary structure in affecting catalytic competency. The double mutant DHDPS-L197D/Y107W displays gel filtration characteristics consistent with a single non-interacting monomeric species, which was confirmed by sedimentary velocity experiments. This monomer was shown to be catalytically active, but with reduced catalytic efficiency (kcat = 9.8 ± 0.5 s−1), displaying 8% of the specific activity of the wild-type enzyme. The Michaelis constants for the substrates pyruvate and for (S)-aspartate semialdehyde increased by an order of magnitude, indicating that quaternary structure plays a significant role in substrate specificity. This monomeric species exhibited an enhanced propensity for aggregation and inactivation, indicating that whilst the oligomerization is not an intrinsic criterion for catalysis, higher oligomeric forms may benefit from both increased catalytic efficiency and diminished aggregation propensity. Furthermore, allosteric inhibition by (S)-lysine was abolished for DHDPS-L197D/Y107W, confirming the importance of the dimeric unit as the minimal functional assembly for efficient (S)-lysine binding.  相似文献   

11.
The bacterial 2-nitroreductase NbaA is the primary enzyme initiating the degradation of 2-nitrobenzoate (2-NBA), and its activity is controlled by posttranslational modifications. To date, the structure of NbaA remains to be elucidated. In this study, the crystal structure of a Cys194Ala NbaA mutant was determined to a 1.7-Å resolution. The substrate analog 2-NBA methyl ester was used to decipher the substrate binding site by inhibition of the wild-type NbaA protein. Tandem mass spectrometry showed that 2-NBA methyl ester produced a 2-NBA ester bond at the Tyr193 residue in the wild-type NbaA but not residues in the Tyr193Phe mutant. Moreover, covalent binding of the 2-NBA methyl ester to Tyr193 reduced the reactivity of the Cys194 residue on the peptide link. The Tyr193 hydroxyl group was shown to be essential for enzyme catalysis, as a Tyr193Phe mutant resulted in fast dissociation of flavin mononucleotide (FMN) from the protein with the reduced reactivity of Cys194. FMN binding to NbaA varied with solution NaCl concentration, which was related to the catalytic activity but not to cysteine reactivity. These observations suggest that the Cys194 reactivity is negatively affected by a posttranslational modification of the adjacent Tyr193 residue, which interacts with FMN and the substrate in the NbaA catalytic site.  相似文献   

12.
The three-dimensional structure of the enzyme dihydrodipicolinate synthase (KEGG entry Rv2753c, EC 4.2.1.52) from Mycobacterium tuberculosis (Mtb-DHDPS) was determined and refined at 2.28 A (1 A=0.1 nm) resolution. The asymmetric unit of the crystal contains two tetramers, each of which we propose to be the functional enzyme unit. This is supported by analytical ultracentrifugation studies, which show the enzyme to be tetrameric in solution. The structure of each subunit consists of an N-terminal (beta/alpha)(8)-barrel followed by a C-terminal alpha-helical domain. The active site comprises residues from two adjacent subunits, across an interface, and is located at the C-terminal side of the (beta/alpha)(8)-barrel domain. A comparison with the other known DHDPS structures shows that the overall architecture of the active site is largely conserved, albeit the proton relay motif comprising Tyr(143), Thr(54) and Tyr(117) appears to be disrupted. The kinetic parameters of the enzyme are reported: K(M)(ASA)=0.43+/-0.02 mM, K(M)(pyruvate)=0.17+/-0.01 mM and V(max)=4.42+/-0.08 micromol x s(-1) x mg(-1). Interestingly, the V(max) of Mtb-DHDPS is 6-fold higher than the corresponding value for Escherichia coli DHDPS, and the enzyme is insensitive to feedback inhibition by (S)-lysine. This can be explained by the three-dimensional structure, which shows that the (S)-lysine-binding site is not conserved in Mtb-DHDPS, when compared with DHDPS enzymes that are known to be inhibited by (S)-lysine. A selection of metabolites from the aspartate family of amino acids do not inhibit this enzyme. A comprehensive understanding of the structure and function of this important enzyme from the (S)-lysine biosynthesis pathway may provide the key for the design of new antibiotics to combat tuberculosis.  相似文献   

13.
One of the many interactions important for stabilizing the T state of aspartate carbamoyltransferase occurs between residues Tyr240 and Asp271 within one catalytic chain. The functional importance of this polar interaction was documented by site-directed mutagenesis in which the tyrosine was replaced by a phenylalanine [Middleton, S. A., & Kantrowitz, E. R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5866-5870]. In the Tyr240----Phe mutant, the aspartate concentration required to achieve half-maximum velocity is reduced to 4.7 from 11.9 mM for the native enzyme. Here, we report an X-ray crystallographic study of the Tyr240----Phe enzyme at 2.5-A resolution. While employing crystallization conditions identical with those used to grow cytidine triphosphate ligated T-state crystals of the native enzyme, we obtain crystals of the mutant enzyme that are isomorphous to those of the native enzyme. Refinement of the mutant structure to an R factor of 0.219 (only eight solvent molecules included) and subsequent comparison to the native T-state structure indicate that the quaternary, tertiary, and secondary structures of the mutant are similar to those for the native T-state enzyme. However, the conformation of Phe240 in one of the two crystallographically independent catalytic chains contained in the asymmetric unit is significantly different from the conformation of Tyr240 in the native T-state enzyme and similar to the conformation of Tyr240 as determined from the R-state structure [Ke, H.-M., Lipscomb, W. N., Cho, Y. J., & Honzatko, R. B. (1988) J. Mol. Biol. (in press)], thereby indicating that the mutant has made a conformational change toward the R state, localized at the site of the mutation in one of the catalytic chains.  相似文献   

14.
Dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) is a tetrameric enzyme that catalyses the first committed step of the lysine biosynthetic pathway. Dimeric variants of DHDPS have impaired catalytic activity due to aberrant protein motions within the dimer unit. Thus, it is thought that the tetrameric structure functions to restrict these motions and optimise enzyme dynamics for catalysis. Despite the importance of dimer-dimer association, the interface between subunits of each dimer is small, accounting for only 4.3% of the total monomer surface area, and the structure of the interface is not conserved across species. We have probed the tolerance of dimer-dimer association to mutation by introducing amino acid substitutions within the interface. All point mutations resulted in destabilisation of the ‘dimer of dimers’ tetrameric structure. Both the position of the mutation in the interface and the physico-chemical nature of the substitution appeared to effect tetramerisation. Despite only weak destabilisation of the tetramer by some mutations, catalytic activity was reduced to ∼10-15% of the wild-type in all cases, suggesting that the dimer-dimer interface is finely tuned to optimise function.  相似文献   

15.
Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8 (PL-8), acts exolytically on the side-chains of pentasaccharide-repeating polysaccharide xanthan and cleaves the glycosidic bond between glucuronic acid (GlcUA) and pyruvylated mannose (PyrMan) through a beta-elimination reaction. To clarify the enzyme reaction mechanism, i.e. its substrate recognition and catalytic reaction, we determined crystal structures of a mutant enzyme, N194A, in complexes with the product (PyrMan) and a substrate (pentasacharide) and in a ligand-free form at 1.8, 2.1, and 2.3A resolution. Based on the structures of the mutant in complexes with the product and substrate, we found that xanthan lyase recognized the PyrMan residue at subsite -1 and the GlcUA residue at +1 on the xanthan side-chain and underwent little interaction with the main chain of the polysaccharide. The structure of the mutant-substrate complex also showed that the hydroxyl group of Tyr255 was close to both the C-5 atom of the GlcUA residue and the oxygen atom of the glycosidic bond to be cleaved, suggesting that Tyr255 likely acts as a general base that extracts the proton from C-5 of the GlcUA residue and as a general acid that donates the proton to the glycosidic bond. A structural comparison of catalytic centers of PL-8 lyases indicated that the catalytic reaction mechanism is shared by all members of the family PL-8, while the substrate recognition mechanism differs.  相似文献   

16.
In plants and bacteria, the branch point of (S)-lysine biosynthesis is the condensation of (S)-aspartate-β-semialdehyde and pyruvate, a reaction catalysed by dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52). In this study, we probe the function of threonine 44 in Escherichia coli DHDPS, with respect to its role in the proton relay. Removal of the hydroxyl moiety of threonine 44, by mutation to valine, significantly attenuates activity (0.1% of wild-type) because the proton relay is broken. It was thus predicted that mutation of threonine 44 to serine would re-establish the proton relay and thus enzymatic activity. Following site-directed mutagenesis and purification to yield the DHDPS-Thr44Ser mutant enzyme, kinetic and structural studies were undertaken. The crystal structure of DHDPS-Thr44Ser showed that the active site was intact and that Ser44 and Tyr107 have some conformational flexibility, which is consistent with the observed loss of activity compared to the wild-type enzyme. Electron density was observed at the active site of DHDPS-Thr44Ser, which was identified as a trapped pyruvate analogue, α-ketoglutarate. The activity was indeed found to be increased relative to DHDPS-Thr44Val, but was still reduced to only ∼8% of that of the wild-type enzyme. Interestingly, there was a shift in the kinetic mechanism, from the substituted-enzyme mechanism, observed in the wild-type, to the ternary-complex mechanism, consistent with the trapped substrate analogue. Increased flexibility in the active site appears to facilitate the binding/reaction of substrate analogues, suggesting that wild-type DHDPS has evolved a relatively rigid active site in order to maintain substrate specificity for pyruvate.  相似文献   

17.
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.  相似文献   

18.
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.  相似文献   

19.
Crystal structures of human and rabbit cytosolic serine hydroxymethyltransferase have shown that Tyr65 is likely to be a key residue in the mechanism of the enzyme. In the ternary complex of Escherichia coli serine hydroxymethyltransferase with glycine and 5-formyltetrahydrofolate, the hydroxyl of Tyr65 is one of four enzyme side chains within hydrogen-bonding distance of the carboxylate group of the substrate glycine. To probe the role of Tyr65 it was changed by site-directed mutagenesis to Phe65. The three-dimensional structure of the Y65F site mutant was determined and shown to be isomorphous with the wild-type enzyme except for the missing Tyr hydroxyl group. The kinetic properties of this mutant enzyme in catalyzing reactions with serine, glycine, allothreonine, D- and L-alanine, and 5,10-methenyltetrahydrofolate substrates were determined. The properties of the enzyme with D- and L-alanine, glycine in the absence of tetrahydrofolate, and 5, 10-methenyltetrahydrofolate were not significantly changed. However, catalytic activity was greatly decreased for serine and allothreonine cleavage and for the solvent alpha-proton exchange of glycine in the presence of tetrahydrofolate. The decreased catalytic activity for these reactions could be explained by a greater than 2 orders of magnitude increase in affinity of Y65F mutant serine hydroxymethyltransferase for these amino acids bound as the external aldimine. These data are consistent with a role for the Tyr65 hydroxyl group in the conversion of a closed active site to an open structure.  相似文献   

20.
The first enzyme of the lysine-biosynthesis pathway, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has been purified and characterized inNicotiana sylvestris Speggazini et Comes. A purification scheme was developed for the native DHDPS that subsequently led to the purification to homogeneity of its subunits using two-dimensional gel electrophoresis. Subsequent elution of the purified polypeptide has opened the way for the production of rabbit polyclonal anti-DHDPS sera. The molecular weight of the enzyme was determined to be 164000 daltons (Da) by an electrophoretic method. By labeling with [14C]pyruvate, the enzyme was shown to be composed of four identical subunits of 38500 Da. Pyruvate acts as a stabilizing agent and contributes to the preservation of the tetrameric structure of the enzyme. The enzyme ofN. sylvestris is strongly inhibited by lysine with anI 0.5 of 15 μM; S-(2-aminoethyl)L-cysteine and γ-hydroxylysine, two lysine analogs, were found to be only weak inhibitors. An analog of pyruvate, 2-oxobutyrate, competitively inhibited the enzyme and was found to act at the level of the pyruvate-binding site. Dihydrodipicolinate synthase was localized in the chloroplast and identified as a soluble stromal enzyme by enzymatic and immunological methods. Its properties are compared with those known for other plant and bacterial DHDPS enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号