首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomics is a new scientific field aimed at the large-scale characterization of the protein constituents of biologic systems. It facilitates comparisons between different protein preparations by searching for minute differences in their protein expression repertoires and the patterns of their post-translational modifications. These attributes make proteomics perfectly suited for searching for proteins and peptides expressed exclusively or preferentially in cancer cells as candidates for cancer vaccines. The main proteomics technologies include 2D polyacrylamide gel electrophoresis, multidimensional high-performance liquid chromatography, mass spectrometry and protein arrays. Proteomics technologies used to analyze cancer culture cells, fresh tumor specimens, human leukocyte antigen peptides, serum and serum antibodies (serologic proteomics) have successfully identified tumor markers. Turning the potential vaccine candidates identified by proteomics technologies into clinical treatments awaits demonstration.  相似文献   

2.
Proteomics technologies and challenges   总被引:4,自引:0,他引:4  
Proteomics is the study of proteins and their interactions in a cell. With the completion of the Human Genome Project, the emphasis is shifting to the protein compliment of the human organism. Because proteome reflects more accurately on the dynamic state of a cell, tissue, or organism, much is expected from proteomics to yield better disease markers for diagnosis and therapy monitoring. The advent of proteomics technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of diseases. High-throughput proteomics technologies combining with advanced bioinformatics are extensively used to identify molecular signatures of diseases based on protein pathways and signaling cascades. Mass spectrometry plays a vital role in proteomics and has become an indispensable tool for molecular and cellular biology. While the potential is great, many challenges and issues remain to be solved, such as mining low abundant proteins and integration of proteomics with genomics and metabolomics data. Nevertheless, proteomics is the foundation for constructing and extracting useful knowledge to biomedical research. In this review, a snapshot of contemporary issues in proteomics technologies is discussed.  相似文献   

3.
To date, the quest to develop a noninvasive diagnostic test for endometriosis has mostly concentrated on the levels of cytokines and growth factors that are involved in inflammation, angioneogenesis and tissue remodeling, present in serum, peritoneal fluid, endometrium and endometriotic lesions. As this has not yet translated into the development of such a diagnostic test, proteomic techniques are now being employed to identify proteins that are potential biomarkers for the disease. As proteomics allows the comprehensive analysis of complex fluid and tissue samples with good sensitivity and resolution, it has promise in delivering markers associated with endometriosis. Once identified, the challenge will be in translating these markers into a clinically useful test for endometriosis, as the pathophysiology of this disease is unknown and likely to be complex and multifactorial. Also, with variation between individuals and the influences of steroid hormones during the menstrual cycle, it could be difficult to validate findings relating to a single protein or small groups of proteins differentially expressed in the disease state. Proteomic profiling, using mass spectrometry in combination with sophisticated bioinformatics software to identify protein patterns, may be where a significant clinical diagnostic contribution can be made.  相似文献   

4.
Xiao H  Wong DT 《Bioinformation》2010,5(7):294-296
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

5.
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

6.
For several years proteomics research has been expected to lead to the finding of new markers that will translate into clinical tests applicable to samples such as serum, plasma and urine: so-called in vitro diagnostics (IVDs). Attempts to implement technologies applied in proteomics, in particular protein arrays and surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS), as IVD instruments have initiated constructive discussions on opportunities and challenges inherent in such a translation process also with respect to the use of multi-marker profiling approaches and pattern signatures in IVD. Taking into account the role that IVD plays in health care, we describe IVD requirements and needs. Subject to stringent costs versus benefit analyses, IVD has to provide reliable information about a person's condition, prognosis or risk to suffer a disease, thus supporting decisions on treatment or prevention. It is mandatory to fulfill requirements in routine IVD, including disease prevention, diagnosis, prognosis, and treatment monitoring or follow up among others. To fulfill IVD requirements, it is essential to (1) provide diagnostic tests that allow for definite and reliable diagnosis tied to a decision on interventions (prevention, treatment, or nontreatment), (2) meet stringent performance characteristics for each analyte (in particular test accuracy, including both precision of the measurement and trueness of the measurement), and (3) provide adequate diagnostic accuracy, i.e., diagnostic sensitivity and diagnostic specificity, determined by the desired positive and negative predictive values which depend on disease frequency. The fulfillment of essential IVD requirements is mandatory in the regulated environment of modern diagnostics. Addressing IVD needs at an early stage can support a timely and effective transition of findings and developments into routine diagnosis. IVD needs reflect features that are useful in clinical practice. This helps to generate acceptance and assists the implementation process. On the basis of IVD requirements and needs, we outline potential implications for clinical proteomics focused on applied research activities.  相似文献   

7.
Bacterial biodegradation (bioremediation) is the use of microorganisms to break down organic materials into simpler compounds; it plays a pivotal role in the clean-up of hazardous wastes in the environment. Following the completion of genome sequencing in bacteria capable of biodegradation, functional genomic studies have played a major role in obtaining information on bacterial biodegradation pathways. Novel proteomics technologies have recently been developed to make it possible to analyze global protein expression. Proteomics can also provide important information on the life cycle, regulation, and post-translational modification of proteins induced under specific conditions. Proteomics technologies have been applied to the comprehensive study of bacterial biodegradation. In this paper, we introduce the proteomics technologies applicable to bacterial biodegradation studies, review the results of the proteomics analysis of representative biodegrading bacteria, and discuss the potential use of proteomics technologies in future biodegradation studies.  相似文献   

8.
Proteomics, an interface of rapidly evolving advances in physics and biology, is rapidly developing and expanding its potential applications to molecular and cellular biology. Application of proteomics tools has contributed towards identification of relevant protein biomarkers that can potentially change the strategies for early diagnosis and treatment of several diseases. The emergence of powerful mass spectrometry-based proteomics technique has added a new dimension to the field of medical research in liver, heart diseases and certain forms of cancer. Most proteomics tools are also being used to study physiological and pathological events related to reproductive biology. There have been attempts to generate the proteomes of testes, sperm, seminal fluid, epididymis, oocyte, and endometrium from reproductive disease patients. Here, we have reviewed proteomics based investigations in humans over the last decade, which focus on delineating the mechanism underlying various reproductive events such as spermatogenesis, oogenesis, endometriosis, polycystic ovary syndrome, embryo development. The challenge is to harness new technologies like 2-DE, DIGE, MALDI-MS, SELDI-MS, MUDPIT, LC–MS etc., to a greater extent to develop widely applicable clinical tools in understanding molecular aspects of reproduction both in health and disease.  相似文献   

9.
Pediatric tumors of the CNS are the leading cause of cancer-related mortality in children. In pediatric pathology, brain tumors constitute the most frequent solid malignancy. An unparalleled outburst of information in pediatric neuro-oncology research has been witnessed over the last few years, largely due to increased use of high-throughput technologies such as genomics, proteomics and meta-analysis tools. Input from these technologies gives scientists the advantage of early prognosis assessment, more accurate diagnosis and prospective curative intent in the pediatric brain tumor clinical setting. The present review aims to summarize current knowledge on research applying proteomics techniques or proteomics-based approaches performed on pediatric brain tumors. Proteins that can be used as potential disease markers or molecular targets, and their biological significance, are herein listed and discussed. Furthermore, future perspectives that proteomics technologies may offer regarding this devastating disorder are presented.  相似文献   

10.
Advances in proteomics technology offer great promise in the understanding and treatment of the molecular basis of disease. The past decade of proteomics research, the study of dynamic protein expression, post-translational modifications, cellular and sub-cellular protein distribution, and protein-protein interactions, has culminated in the identification of many disease-related biomarkers and potential new drug targets. While proteomics remains the tool of choice for discovery research, new innovations in proteomic technology now offer the potential for proteomic profiling to become standard practice in the clinical laboratory. Indeed, protein profiles can serve as powerful diagnostic markers, and can predict treatment outcome in many diseases, in particular cancer. A number of technical obstacles remain before routine proteomic analysis can be achieved in the clinic; however the standardisation of methodologies and dissemination of proteomic data into publicly available databases is starting to overcome these hurdles. At present the most promising application for proteomics is in the screening of specific subsets of protein biomarkers for certain diseases, rather than large scale full protein profiling. Armed with these technologies the impending era of individualised patient-tailored therapy is imminent. This review summarises the advances in proteomics that has propelled us to this exciting age of clinical proteomics, and highlights the future work that is required for this to become a reality.  相似文献   

11.
Despite advances in molecular medicine, genomics, proteomics and translational research, prostate cancer remains the second most common cause of cancer-related mortality for men in the Western world. Clearly, early detection, targeted treatment and post-treatment monitoring are vital tools to combat this disease. Tumor markers can be useful for diagnosis and early detection of cancer, assessment of prognosis, prediction of therapeutic effect and treatment monitoring. Such tumor markers include prostate-specific antigen (prostate), cancer antigen (CA)15.3 (breast), CA125 (ovarian), CA19.9 (gastrointestinal) and serum α-fetoprotein (testicular cancer). However, all of these biomarkers lack sensitivity and specificity and, therefore, there is a large drive towards proteomic biomarker discovery. Current research efforts are directed towards discovering biosignatures from biological samples using novel proteomic technologies that provide high-throughput, in-depth analysis and quantification of the proteome. Several of these studies have revealed promising biomarkers for use in diagnosis, assessment of prognosis, and targeting treatment of prostate cancer. This review focuses on prostate cancer proteomic biomarker discovery and its future potential.  相似文献   

12.
Antibody‐based proteomics play a very important role in biomarker discovery and validation, facilitating the high‐throughput evaluation of candidate markers. Most proteomics‐driven discovery is nowadays based on the use of MS. MS has many advantages, including its suitability for hypothesis‐free biomarker discovery, since information on protein content of a sample is not required prior to analysis. However, MS presents one main caveat which is the limited sensitivity in complex samples, especially for body fluids, where protein expression covers a huge dynamic range. Antibody‐based technologies remain the main solution to address this challenge since they reach higher sensitivity. In this article, we review the benefits and limitations of antibody‐based proteomics in preclinical and clinical biomarker research for discovery and validation in body fluids and tissue. The combination of antibodies and MS, utilizing the best of both worlds, opens new avenues in biomarker research.  相似文献   

13.
Proteomic analysis of biological samples plays an increasing role in modern research. Although the application of proteomics technologies varies across many disciplines, proteomics largely is a tool for discovery that then leads to novel hypotheses. In recent years, new methods and technologies have been developed and applied in many areas of proteomics, and there is a strong push towards using proteomics in a quantitative manner. Indeed, mass spectrometry-based, quantitative proteomics approaches have been applied to great success in a variety of biochemical studies. In particular, the use of quantitative proteomics provides new insights into protein complexes and post-translational modifications and leads to the generation of novel insights into these important biochemical systems.  相似文献   

14.
Proteomic approaches have advanced clinical research towards more reliable, sensitive and specific biological diagnostic markers for diseases. Mood disorders are most difficult to diagnose and very much prevalent in society; hence, their proper diagnosis becomes essential. Despite tremendous research efforts to dissect the neurobiological basis of psychiatric disorders, the diagnosis and evaluation for such diseases is still poor. Biomarker discovery in psychiatry research has been accelerated by proteomic technologies, accepting the challenges in order to meet disease state-related investigations. Proteomics-based research for disease-specific protein signatures is expected to give a new direction in psychiatry research. Therefore, this may become a more powerful tool to predict the development, course and outcome of the disease towards personalized psychiatric ailments. The review discusses the role of proteomics in elucidating mechanisms of psychiatric disorders, current status, prospects, limitations and new possibilities towards a strong diagnostic tool in the clinical laboratory.  相似文献   

15.
Proteomic analysis of striated muscle   总被引:1,自引:0,他引:1  
The techniques collectively known as proteomics are useful for characterizing the protein phenotype of a particular tissue or cell as well as quantitatively identifying differences in the levels of individual proteins following modulation of a tissue or cell. In the area of striated muscle research, proteomics has been a useful tool for identifying qualitative and quantitative changes in the striated muscle protein phenotype resulting from either disease or physiological modulation. Proteomics is useful for these investigations because many of the changes in the striated muscle phenotype resulting from either disease or changes in physiological state are qualitative and not quantitative changes. For example, modification of striated muscle proteins by phosphorylation and proteolytic cleavage are readily observed using proteomic technologies while these changes would not be identified using genomic technology. In this review, I will discuss the application of proteomic technology to striated muscle research, research designed to identify key protein changes that are either causal for or markers of a striated muscle disease or physiological condition.  相似文献   

16.
17.
In the diagnostic and the pharmaceutical industry there is a constant need for new diagnostic markers and biomarkers with improved sensitivity and specificity. During the last 5 years, only a few novel diagnostic markers have been introduced into the market. Proteomics technologies are now offering unique chances to identify new candidate markers. Before a marker can be introduced into the market, three successive developmental phases have to be completed: the discovery phase, in which a variety of proteomics technologies are applied to identify marker candidates; the prototype developmental phase, in which immunological assays are established and validated in defined sample collectives; and finally the product development phase, with assay formats suitable for automated platforms. The hurdles that a potential candidate marker has to pass in each developmental phase before reaching the market are considerable. The costs are increasing from phase to phase, and in industry a number of questions concerning the medical need and the potential return on investment have to be answered before a proteomics discovery project is started. In this review, we will cover aspects of all three developmental phases including the repertoire of discovery tools for protein separation as well as giving an outline of modern principles of mass spectrometry for the identification of proteins.  相似文献   

18.
In the post-genomic era, proteomics together with genomic tools have led to powerful new strategies in basic and clinical research. These combined “omics” technologies are being integrated into the drug target discovery process. Unlike the genome, the proteome is a highly dynamic entity that requires techniques capable of analyzing on selected populations of proteins in specific biological conditions that reflect the proteins’ functional characteristics. Antibodies have become one of the most important reagents for the analysis of selected populations of proteins, and the application of phage-display antibody libraries to high-throughput antibody generation against large numbers of various antigens provides a tool for proteome-wide protein expression analysis. In this review, we will discuss the utility of phage-display antibodies in proteomics applications, specifically for the discovery of novel disease markers and therapeutic targets.  相似文献   

19.
Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS) for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9) and those who had a ≥20% worsening (Group 1, N = 8). MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann–Whitney–Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2) suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity-associated biomarkers can be further validated in larger retrospective cohorts for their utility in identifying patients at high risk for CIPN.  相似文献   

20.
Vaccines are the most effective way to fight infectious diseases saving countless lives since their introduction. Their evolution during the last century made use of the best technologies available to continuously increase their efficacy and safety. Mass spectrometry (MS) and proteomics are already playing a central role in the identification and characterization of novel antigens. Over the last years, we have been witnessing the emergence of structural proteomics in vaccinology, as a major tool for vaccine candidate discovery, antigen design and life cycle management of existing products. In this review, we describe the MS techniques associated to structural proteomics and we illustrate the contribution of structural proteomics to vaccinology discussing potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号