首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies involving pharmacologic or molecular biologic manipulation of Group VIA phospholipase A(2) (iPLA(2)beta) activity in pancreatic islets and insulinoma cells suggest that iPLA(2)beta participates in insulin secretion. It has also been suggested that iPLA(2)beta is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels and arachidonate incorporation into phosphatidylcholine (PC). We have generated iPLA(2)beta-null mice by homologous recombination and have reported that they exhibit reduced male fertility and defective motility of spermatozoa. Here we report that pancreatic islets from iPLA(2)beta-null mice have impaired insulin secretory responses to D-glucose and forskolin. Electrospray ionization mass spectrometric analyses indicate that the abundance of arachidonate-containing PC species of islets, brain, and other tissues from iPLA(2)beta-null mice is virtually identical to that of wild-type mice, and no iPLA(2)beta mRNA was observed in any tissue from iPLA(2)beta-null mice at any age. Despite the insulin secretory abnormalities of isolated islets, fasting and fed blood glucose concentrations of iPLA(2)beta-null and wild-type mice are essentially identical under normal circumstances, but iPLA(2)beta-null mice develop more severe hyperglycemia than wild-type mice after administration of multiple low doses of the beta-cell toxin streptozotocin, suggesting an impaired islet secretory reserve. A high fat diet also induces more severe glucose intolerance in iPLA(2)beta-null mice than in wild-type mice, but PLA(2)beta-null mice have greater responsiveness to exogenous insulin than do wild-type mice fed a high fat diet. These and previous findings thus indicate that iPLA(2)beta-null mice exhibit phenotypic abnormalities in pancreatic islets in addition to testes and macrophages.  相似文献   

2.
Calcium-independent phospholipase A2beta (iPLA2beta) participates in numerous diverse cellular processes, such as arachidonic acid release, insulin secretion, calcium signaling, and apoptosis. Herein, we demonstrate the highly selective iPLA2beta-catalyzed hydrolysis of saturated long-chain fatty acyl-CoAs (palmitoyl-CoA approximately myristoyl-CoA > stearoyl-CoA > oleoyl-CoA approximately = arachidonoyl-CoA) present either as monomers in solution or guests in host membrane bilayers. Site-directed mutagenesis of the iPLA2beta catalytic serine (S465A) completely abolished acyl-CoA thioesterase activity, demonstrating that Ser-465 catalyzes both phospholipid and acyl-CoA hydrolysis. Remarkably, incubation of iPLA2beta with oleoyl-CoA, but not other long-chain acyl-CoAs, resulted in robust stoichiometric covalent acylation of the enzyme. Moreover, S465A mutagenesis or pretreatment of wild-type iPLA2beta with (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one unexpectedly increased acylation of the enzyme, indicating the presence of a second reactive nucleophilic residue that participates in the formation of the fatty acyl-iPLA2beta adduct. Radiolabeling of intact Sf9 cells expressing iPLA2beta with [3H]oleic acid demonstrated oleoylation of the membrane-associated enzyme. Partial trypsinolysis of oleoylated iPLA2beta and matrix-assisted laser desorption ionization mass spectrometry analysis localized the acylation site to a hydrophobic 25-kDa fragment (residues approximately 400-600) spanning the active site to the calmodulin binding domain. Intriguingly, calmodulin-Ca2+ blocked acylation of iPLA2beta by oleoyl-CoA. Remarkably, the addition of low micromolar concentrations (5 microM) of oleoyl-CoA resulted in reversal of calmodulin-mediated inhibition of iPLA2 beta phospholipase A2 activity. These results collectively identify the molecular species-specific acyl-CoA thioesterase activity of iPLA2beta, demonstrate the presence of a second active site that mediates iPLA2beta autoacylation, and identify long-chain acyl-CoAs as potential candidates mediating calcium influx factor activity.  相似文献   

3.
4.
5.
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.  相似文献   

6.
Pharmacologic evidence suggests that the lipid products generated by one or more calcium-independent phospholipases A(2) (iPLA(2)s) participate in the regulation of vascular tone through smooth muscle cell (SMC) Ca(2+) signaling and the release of arachidonic acid. However, the recent identification of new members of the iPLA(2) family, each inhibitable by (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one, has rendered definitive identification of the specific enzyme(s) mediating these processes difficult. Accordingly, we used iPLA(2)beta(-/-) mice to demonstrate that iPLA(2)beta is responsible for the majority of thapsigargin and ionophore (A23187)-induced arachidonic acid release from SMCs. Both thapsigargin and A23187 stimulated robust [(3)H]arachidonate (AA) release from wild-type aortic SMCs that was dramatically attenuated in iPLA(2)beta(-/-) mice (>80% reduction at 5 min; p < 0.01). Moreover, iPLA(2)beta(-/-) mice displayed defects in SMC Ca(2+) homeostasis and decreased SMC migration and proliferation in a model of vascular injury. Ca(2+)-store depletion resulted in the rapid entry of external Ca(2+) into wild-type aortic SMCs that was significantly slower in iPLA(2)beta-null cells (p < 0.01). Furthermore, SMCs from iPLA(2)beta-null mesenteric arterial explants demonstrated decreased proliferation and migration. The defects in migration and proliferation in iPLA(2)beta-null SMCs were restored by 2 mum AA. Remarkably, the cyclooxygenase-2-specific inhibitor, NS-398, prevented AA-induced rescue of SMC migration and proliferation in iPLA(2)beta(-/-) mice. Moreover, PGE(2) alone rescued proliferation and migration in iPLA(2)beta(-/-) mice. We conclude that iPLA(2)beta is an important mediator of AA release and prostaglandin E(2) production in SMCs, modulating vascular tone, cellular signaling, proliferation, and migration.  相似文献   

7.
Calcium-independent phospholipase A(2) group VIA (iPLA(2)β) releases docosahexaenoic acid (DHA) from phospholipids in vitro. Mutations in the iPLA(2)β gene, PLA2G6, are associated with dystonia-parkinsonism and infantile neuroaxonal dystrophy. To understand the role of iPLA(2)β in brain, we applied our in vivo kinetic method using radiolabeled DHA in 4 to 5-month-old wild type (iPLA(2)β(+/+)) and knockout (iPLA(2)β(-/-)) mice, and measured brain DHA kinetics, lipid concentrations, and expression of PLA(2), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes. Compared to iPLA(2)β(+/+) mice, iPLA(2)β(-/-) mice showed decreased rates of incorporation of unesterified DHA from plasma into brain phospholipids, reduced concentrations of several fatty acids (including DHA) esterified in ethanolamine- and serine-glycerophospholipids, and increased lysophospholipid fatty acid concentrations. DHA turnover in brain phospholipids did not differ between genotypes. In iPLA(2)β(-/-) mice, brain levels of iPLA(2)β mRNA, protein, and activity were decreased, as was the iPLA(2)γ (Group VIB PLA(2)) mRNA level, while levels of secretory sPLA(2)-V mRNA, protein, and activity and cytosolic cPLA(2)-IVA mRNA were increased. Levels of COX-1 protein were decreased in brain, while COX-2 protein and mRNA were increased. Levels of 5-, 12-, and 15-LOX proteins did not differ significantly between genotypes. Thus, a genetic iPLA(2)β deficiency in mice is associated with reduced DHA metabolism, profound changes in lipid-metabolizing enzyme expression (demonstrating lack of redundancy) and of phospholipid fatty acid content of brain (particularly of DHA), which may be relevant to neurologic abnormalities in humans with PLA2G6 mutations.  相似文献   

8.
9.
We purified an 80-kDa Ca2+-independent phospholipase A2 (iPLA2) from rat brain using octyl-Sepharose, ATP-agarose, and calmodulin-agarose column chromatography steps. This procedure gave a 30,000-fold purification and yielded 4 microg of a near-homogeneous iPLA2 with a specific activity of 4.3 micromol/min/mg. Peptide sequences of the rat brain iPLA2 display considerable homology to sequences of the iPLA2 from P388D1 macrophages, Chinese hamster ovary cells, and human B lymphocytes. Under optimal conditions, the iPLA2 revealed the following substrate preference toward the fatty acid chain in the sn-2 position of phosphatidylcholine: linoleoyl > palmitoyl > oleoyl > arachidonoyl. The rat brain iPLA2 also showed a head group preference for choline > or = ethanolamine > inositol. The iPLA2 is inactivated when exposed to pure phospholipid vesicles. The only exception is vesicles composed of phosphatidylcholine and phosphatidylinositol 4,5-bisphosphate. Studies on the regional distribution and ontogeny of various phospholipase A2 (PLA2) types in rat brain indicate that the iPLA2 is the dominant PLA2 activity in the cytosolic fraction, whereas the group IIA secreted PLA2 is the dominant activity in the particulate fraction. The activities of these two enzymes change during postnatal development.  相似文献   

10.
Song H  Ramanadham S  Bao S  Hsu FF  Turk J 《Biochemistry》2006,45(3):1061-1073
Phospholipases A2 (PLA2) comprise a superfamily of enzymes that hydrolyze phospholipids to a free fatty acid, e.g., arachidonate, and a 2-lysophospholipid. Dissecting their individual functions has relied in large part on pharmacological inhibitors that discriminate among PLA2. Group VIA PLA2 (iPLA2beta) has a GTSTG serine lipase consensus sequence, and studies with a bromoenol lactone (BEL) suicide substrate inhibitor have been taken to suggest that iPLA2beta participates in a wide variety of biological processes. Such conclusions presume inhibitor specificity. Inhibition by BEL requires its hydrolysis by and results in uncharacterized covalent modification(s) of iPLA2beta. We performed mass spectrometric analyses of proteolytic digests of BEL-treated iPLA2beta to identify modifications associated with loss of activity. The GTSTG active site and large flanking regions of sequence are not modified by BEL treatment, but most iPLA2beta Cys residues are alkylated at various BEL concentrations to form a thioether linkage to a BEL keto acid hydrolysis product. Synthetic Cys-containing peptides are alkylated when incubated with iPLA2beta and BEL, which reflects iPLA2beta-catalyzed BEL hydrolysis to a diffusible bromomethyl keto acid product that reacts with distant thiols. The BEL concentration dependence of Cys651 alkylation closely parallels that of loss of iPLA2beta activity. No amino acid residues other than Cys were found to be modified, suggesting that Cys alkylation is the covalent modification of iPLA2beta responsible for loss of activity, and the alkylating species appears to be a diffusible hydrolysis product of BEL rather than a tethered acyl-enzyme intermediate.  相似文献   

11.
Phospholipase A2 (PLA2) activity supports production of reactive oxygen species (ROS) by mammalian cells. In skeletal muscle, endogenous ROS modulate the force of muscle contraction. We tested the hypothesis that skeletal muscle cells constitutively express the calcium-independent PLA2 (iPLA2) isoform and that iPLA2 modulates both cytosolic oxidant activity and contractile function. Experiments utilized differentiated C2C12 myotubes and a panel of striated muscles isolated from adult mice. Muscle preparations were processed for measurement of mRNA by real-time PCR, protein by immunoblot, cytosolic oxidant activity by the dichlorofluorescein oxidation assay, and contractile function by in vitro testing. We found that iPLA2 was constitutively expressed by all muscles tested (myotubes, diaphragm, soleus, extensor digitorum longus, gastrocnemius, heart) and that mRNA and protein levels were generally similar among muscles. Selective iPLA2 blockade by use of bromoenol lactone (10 microM) decreased cytosolic oxidant activity in myotubes and intact soleus muscle fibers. iPLA2 blockade also inhibited contractile function of unfatigued soleus muscles, shifting the force-frequency relationship rightward and depressing force production during acute fatigue. Each of these changes could be reproduced by selective depletion of superoxide anions using superoxide dismutase (1 kU/ml). These findings suggest that constitutively expressed iPLA2 modulates oxidant activity in skeletal muscle fibers by supporting ROS production, thereby influencing contractile properties and fatigue characteristics.  相似文献   

12.
The Group VIA Phospholipase A(2) (iPLA(2)beta) is the first recognized cytosolic Ca(2+)-independent PLA(2) and has been proposed to participate in arachidonic acid (20:4) incorporation into glycerophosphocholine lipids, cell proliferation, exocytosis, apoptosis, and other processes. To study iPLA(2)beta functions, we disrupted its gene by homologous recombination to generate mice that do not express iPLA(2)beta. Heterozygous iPLA(2)beta(+/-) breeding pairs yield a Mendelian 1:2:1 ratio of iPLA(2)beta(+/+), iPLA(2)beta(+/-), and iPLA(2)beta(-/-) pups and a 1:1 male:female gender distribution of iPLA(2)beta(-/-) pups. Several tissues of wild-type mice express iPLA(2)beta mRNA, immunoreactive protein, and activity, and testes express the highest levels. Testes or other tissues of iPLA(2)beta(-/-) mice express no iPLA(2)beta mRNA or protein, but iPLA(2)beta(-/-) testes are not deficient in 20:4-containing glycerophosphocholine lipids, indicating that iPLA(2)beta does not play an obligatory role in formation of such lipids in that tissue. Spermatozoa from iPLA(2)beta(-/-) mice have reduced motility and impaired ability to fertilize mouse oocytes in vitro and in vivo, and inhibiting iPLA(2)beta with a bromoenol lactone suicide substrate reduces motility of wild-type spermatozoa in a time- and concentration-dependent manner. Mating iPLA(2)beta(-/-) male mice with iPLA(2)beta(+/+), iPLA(2)beta(+/-), or iPLA(2)beta(-/-) female mice yields only about 7% of the number of pups produced by mating pairs with an iPLA(2)beta(+/+) or iPLA(2)beta(+/-) male, but iPLA(2)beta(-/-) female mice have nearly normal fertility. These findings indicate that iPLA(2)beta plays an important functional role in spermatozoa, suggest a target for developing male contraceptive drugs, and complement reports that disruption of the Group IVA PLA(2) (cPLA(2)alpha) gene impairs female reproductive ability.  相似文献   

13.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

14.
Although human group VIB calcium-independent phospholipase A(2) (iPLA(2)gamma) contains the lipase-consensus sequence Gly-Xaa-Ser-Xaa-Gly in the C-terminal half, its overall sequence exhibits a week similarity to those of other PLA(2)s, and thus no information on the catalytic site has been available. Here we show that the C-terminal region of human iPLA(2)gamma is responsible for the enzymatic activity. Comparison of this catalytic domain with those of the mouse homologue, human cytosolic PLA(2) (cPLA(2)), and the plant PLA(2) patatin reveals that an amino acid sequence of a short segment around Asp-627 of iPLA(2)gamma is conserved among these PLA(2)s, in addition to the Ser-483-containing lipase motif; the corresponding serine and aspartate in cPLA(2) and patatin are known to form a catalytic dyad. Since substitution of alanine for either Ser-483 or Asp-627 results in a loss of the PLA(2) activity, we propose that Ser-483 and Asp-627 of human iPLA(2)gamma constitute an active site similar to the Ser-Asp dyad in cPLA(2) and patatin.  相似文献   

15.
Thioesterase superfamily member 1 (Them1; synonyms acyl-CoA thioesterase 11 and StarD14) is highly expressed in brown adipose tissue and limits energy expenditure in mice. Them1 is a putative fatty acyl-CoA thioesterase that comprises tandem hot dog-fold thioesterase domains and a lipid-binding C-terminal steroidogenic acute regulatory protein-related lipid transfer (START) domain. To better define its role in metabolic regulation, this study examined the biochemical and enzymatic properties of Them1. Purified recombinant Them1 dimerized in solution to form an active fatty acyl-CoA thioesterase. Dimerization was induced by fatty acyl-CoAs, coenzyme A (CoASH), ATP, and ADP. Them1 hydrolyzed a range of fatty acyl-CoAs but exhibited a relative preference for long-chain molecular species. Thioesterase activity varied inversely with temperature, was stimulated by ATP, and was inhibited by ADP and CoASH. Whereas the thioesterase domains of Them1 alone were sufficient to yield active recombinant protein, the START domain was required for optimal enzyme activity. An analysis of subcellular fractions from mouse brown adipose tissue and liver revealed that Them1 contributes principally to the fatty acyl-CoA thioesterase activity of microsomes and nuclei. These findings suggest that under biological conditions, Them1 functions as a lipid-regulated fatty acyl-CoA thioesterase that could be targeted for the management of metabolic disorders.  相似文献   

16.
Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium ion stimulated the production of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) from 1-palmitoyl-2-[(14)C]arachidonoyl-sn-glycero-3-phosphocholine during incubations with wild-type heart mitochondrial homogenates. Furthermore, incubation of mitochondrial homogenates from transgenic myocardium expressing iPLA(2)γ resulted in 13- and 25-fold increases in the initial rate of radiolabeled 2-AA-LPC and arachidonic acid (AA) production, respectively, in the presence of calcium ion. Mass spectrometric analysis of the products of calcium-activated hydrolysis of endogenous mitochondrial phospholipids in transgenic iPLA(2)γ mitochondria revealed the robust production of AA, 2-AA-LPC, and 2-docosahexaenoyl-LPC that was over 10-fold greater than wild-type mitochondria. The mechanism-based inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) (iPLA(2)γ selective), but not its enantiomer, (S)-BEL (iPLA(2)β selective) or pyrrolidine (cytosolic PLA(2)α selective), markedly attenuated Ca(2+)-dependent fatty acid release and polyunsaturated LPC production. Moreover, Ca(2+)-induced iPLA(2)γ activation was accompanied by the production of downstream eicosanoid metabolites that were nearly completely ablated by (R)-BEL or by genetic ablation of iPLA(2)γ. Intriguingly, Ca(2+)-induced iPLA(2)γ activation was completely inhibited by long-chain acyl-CoA (IC(50) ~20 μm) as well as by a nonhydrolyzable acyl-CoA thioether analog. Collectively, these results demonstrate that mitochondrial iPLA(2)γ is activated by divalent cations and inhibited by acyl-CoA modulating the generation of biologically active metabolites that regulate mitochondrial bioenergetic and signaling functions.  相似文献   

17.
The thioesterase activity of porcine pancreatic phospholipase A2 has been investigated with non-phospholipid substrates. The acyl-CoA hydrolase activity towards acyl-CoA derivatives is specific for long chain fatty acids (14 C, 16 C) but is unable to hydrolyze short chain acyl-CoA compounds (below 8 C). The same enzyme also shows protein deacylase activity liberating [3H]palmitic acid from [3H]palmitoyl-acyl carrier protein.  相似文献   

18.
19.
Murine myocardium contains diminutive amounts of calcium-independent phospholipase A2 (iPLA2) activity (<5% that of human heart), and malignant ventricular tachyarrhythmias are infrequent during acute murine myocardial ischemia. Accordingly we considered the possibility that the mouse was a species-specific knockdown of the human pathologic phenotype of ischemiainduced lethal ventricular tachyarrhythmias. Transgenic mice were generated expressing amounts of iPLA2beta activity comparable to that present in human myocardium. Coronary artery occlusion in Langendorff perfused hearts from transgenic mice resulted in a 22-fold increase in fatty acids released into the venous eluent (29.4 nmol/ml in transgenic versus 1.35 nmol/ml of eluent in wild-type mice), a 4-fold increase in lysophosphatidylcholine mass in ischemic zones (4.9 nmol/mg in transgenic versus 1.1 nmol/mg of protein in wild-type mice), and malignant ventricular tachyarrhythmias within minutes of ischemia. Neither normally perfused transgenic nor ischemic wild-type hearts demonstrated these alterations. Pretreatment of Langendorff perfused transgenic hearts with the iPLA2 mechanism-based inhibitor (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) just minutes prior to induction of ischemia completely ablated fatty acid release and lysolipid accumulation and rescued transgenic hearts from malignant ventricular tachyarrhythmias. Collectively these results demonstrate that ischemia activates iPLA2beta in intact myocardium and that iPLA2beta-mediated hydrolysis of membrane phospholipids can induce lethal malignant ventricular tachyarrhythmias during acute cardiac ischemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号