首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potassium channel Kv1.3 is an attractive pharmacological target for autoimmune diseases. Specific peptide inhibitors are key prospects for diagnosing and treating these diseases. Here, we identified the first scorpion Kunitz-type potassium channel toxin family with three groups and seven members. In addition to their function as trypsin inhibitors with dissociation constants of 140 nM for recombinant LmKTT-1a, 160 nM for LmKTT-1b, 124 nM for LmKTT-1c, 136 nM for BmKTT-1, 420 nM for BmKTT-2, 760 nM for BmKTT-3, and 107 nM for Hg1, all seven recombinant scorpion Kunitz-type toxins could block the Kv1.3 channel. Electrophysiological experiments showed that six of seven scorpion toxins inhibited ~50-80% of Kv1.3 channel currents at a concentration of 1 μM. The exception was rBmKTT-3, which had weak activity. The IC(50) values of rBmKTT-1, rBmKTT-2, and rHg1 for Kv1.3 channels were ~129.7, 371.3, and 6.2 nM, respectively. Further pharmacological experiments indicated that rHg1 was a highly selective Kv1.3 channel inhibitor with weak affinity for other potassium channels. Different from classical Kunitz-type potassium channel toxins with N-terminal regions as the channel-interacting interfaces, the channel-interacting interface of Hg1 was in the C-terminal region. In conclusion, these findings describe the first scorpion Kunitz-type potassium channel toxin family, of which a novel inhibitor, Hg1, is specific for Kv1.3 channels. Their structural and functional diversity strongly suggest that Kunitz-type toxins are a new source to screen and design potential peptides for diagnosing and treating Kv1.3-mediated autoimmune diseases.  相似文献   

2.
Kv1 potassium channels are widely distributed in mammalian tissues and are involved in a variety of functions from controlling the firing rate of neurons to maturation of T-lymphocytes. Here we show that the newly described KCNE4 beta-subunit has a drastic inhibitory effect on currents generated by Kv1.1 and Kv1.3 potassium channels. The inhibition is found on channels expressed heterologously in both Xenopus oocytes and mammalian HEK293 cells. mKCNE4 does not inhibit Kv1.2, Kv1.4, Kv1.5, or Kv4.3 homomeric complexes, but it does significantly reduce current through Kv1.1/Kv1.2 and Kv1.2/Kv1.3 heteromeric complexes. Confocal microscopy and Western blotting reveal that Kv1.1 is present at the cell surface together with KCNE4. Real-time RT-PCR shows a relatively high presence of mKCNE4 mRNA in several organs, including uterus, kidney, lung, intestine, and in embryo, whereas a much lower mRNA level is detected in the heart and in five different parts of the brain. Having the broad distribution of Kv1 channels in mind, the demonstrated inhibitory property of KCNE4-subunits could locally and/or transiently have a dramatic influence on cellular excitability and on setting resting membrane potentials.  相似文献   

3.
The Shaker family voltage-dependent potassium channels (Kv1) assemble with cytosolic beta-subunits (Kvbeta) to form a stable complex. All Kvbeta subunits have a conserved core domain, which in one of them (Kvbeta2) is an aldoketoreductase that utilizes NADPH as a cofactor. In addition to this core, Kvbeta1 has an N terminus that closes the channel by the N-type inactivation mechanism. Point mutations in the putative catalytic site of Kvbeta1 alter the on-rate of inactivation. Whether the core of Kvbeta1 functions as an enzyme and whether its enzymatic activity affects N-type inactivation had not been explored. Here, we show that Kvbeta1 is a functional aldoketoreductase and that oxidation of the Kvbeta1-bound cofactor, either enzymatically by a substrate or non-enzymatically by hydrogen peroxide or NADP(+), induces a large increase in open channel current. The modulation is not affected by deletion of the distal C terminus of the channel, which has been suggested in structural studies to interact with Kvbeta. The rate of increase in current, which reflects NADPH oxidation, is approximately 2-fold faster at 0-mV membrane potential than at -100 mV. Thus, cofactor oxidation by Kvbeta1 is regulated by membrane potential, presumably via voltage-dependent structural changes in Kv1.1 channels.  相似文献   

4.
The choroid plexuses secrete, and maintain the composition of, the cerebrospinal fluid. K+ channels play an important role in these processes. In this study the molecular identity and properties of the delayed-rectifying K+ (Kv) conductance in rat choroid plexus epithelial cells were investigated. Whole cell K+ currents were significantly reduced by 10 nM dendrotoxin-K and 1 nM margatoxin, which are specific inhibitors of Kv1.1 and Kv1.3 channels, respectively. A combination of dendrotoxin-K and margatoxin caused a depolarization of the membrane potential in current-clamp experiments. Western blot analysis indicated the presence of Kv1.1 and Kv1.3 proteins in the choroid plexus. Furthermore, the Kv1.3 and Kv1.1 proteins appear to be expressed in the apical membrane of the epithelial cells in immunocytochemical studies. The Kv conductance was inhibited by 1 µM serotonin (5-HT), with maximum inhibition to 48% of control occurring in 8 min (P < 0.05 by Student's t-test for paired data). Channel inhibition by 5-HT was prevented by the 5-HT2C antagonist mesulergine (300 nM). It was also attenuated in the presence of calphostin C (a protein kinase C inhibitor). The conductance was partially inhibited by 1,2-dioctanoyl-sn-glycerol and phorbol 12-myristate 13-acetate, both of which activate protein kinase C. These data suggest that 5-HT acts at 5-HT2C receptors to activate protein kinase C, which inhibits the Kv channels. In conclusion, Kv1.1 and Kv1.3 channels make a significant contribution to K+ efflux at the apical membrane of the choroid plexus. delayed-rectifying potassium channel; serotonin  相似文献   

5.
BgK is a peptide from the sea anemone Bunodosoma granulifera, which blocks Kv1.1, Kv1.2, and Kv1.3 potassium channels. Using 25 analogs substituted at a single position by an alanine residue, we performed the complete mapping of the BgK binding sites for the three Kv1 channels. These binding sites included three common residues (Ser-23, Lys-25, and Tyr-26) and a variable set of additional residues depending on the particular channel. Shortening the side chain of Lys-25 by taking out the four methylene groups dramatically decreased the BgK affinity to all Kv1 channels tested. However, the analog K25Orn displayed increased potency on Kv1.2, which makes this peptide a selective blocker for Kv1.2 (K(D) 50- and 300-fold lower than for Kv1.1 and Kv1.3, respectively). BgK analogs with enhanced selectivity could also be made by substituting residues that are differentially involved in the binding to some of the three Kv1 channels. For example, the analog F6A was found to be >500-fold more potent for Kv1.1 than for Kv1.2 and Kv1.3. These results provide new information about the mechanisms by which a channel blocker distinguishes individual channels among closely related isoforms and give clues for designing analogs with enhanced selectivity.  相似文献   

6.
The potassium channel Kv1.3 is an attractive pharmacological target for immunomodulation of T cell-mediated autoimmune diseases. Potent and selective blockers of Kv1.3 are potential therapeutics for treating these diseases. Here we describe the design of a new peptide inhibitor that is potent and selective for Kv1.3. Three residues (Gly(11), Ile(28), and Asp(33)) of a scorpion toxin BmKTX were substituted by Arg(11), Thr(28), and His(33), resulting in a new peptide, named ADWX-1. The ADWX-1 peptide blocked Kv1.3 with picomolar affinity (IC(50), 1.89 pM), showing a 100-fold increase in activity compared with the native BmKTX toxin. The ADWX-1 also displayed good selectivity on Kv1.3 over related Kv1.1 and Kv1.2 channels. Furthermore, alanine-scanning mutagenesis was carried out to map the functional residues of ADWX-1 in blocking Kv1.3. Moreover, computational simulation was used to build a structural model of the ADWX-1-Kv1.3 complex. This model suggests that all mutated residues are favorable for both the high potency and selectivity of ADWX-1 toward Kv1.3. While Arg(11) of ADWX-1 interacts with Asp(386) in Kv1.3, Thr(28) and His(33) of ADWX-1 locate right above the selectivity filter-S6 linker of Kv1.3. Together, our data indicate that the specific ADWX-1 peptide would be a viable lead in the therapy of T cell-mediated autoimmune diseases, and the successful design of ADWX-1 suggests that rational design based on the structural model of the peptide-channel complex should accelerate the development of diagnostic and therapeutic agents for human channelopathies.  相似文献   

7.
8.
Dendrotoxin (DTX) homologues are powerful blockers of K+ channels that contain certain subfamily Kv1 (1.1-1.6) alpha- and beta-subunits, in (alpha)4(beta)4 stoichiometry. DTXk inhibits potently Kv1.1-containing channels only, whereas alphaDTX is less discriminating, but exhibits highest affinity for Kv1.2. Herein, the nature of interactions of DTXk with native K+ channels composed of Kv1.1 and 1.2 (plus other) subunits were examined, using 15 site-directed mutants in which amino acids were altered in the 310-helix, beta-turn, alpha-helix and random-coil regions. The mutants' antagonism of high-affinity [125I]DTXk binding to Kv1. 1-possessing channels in rat brain membranes and blockade of the Kv1. 1 current expressed in oocytes were quantified. Also, the levels of inhibition of [125I]alphaDTX binding to brain membranes by the DTXk mutants were used to measure their high- and low-affinity interactions, respectively, with neuronal Kv1.2-containing channels that possess Kv1.1 as a major or minor constituent. Displacement of toxin binding to either of these subtypes was not altered by single substitution with alanine of three basic residues in the random-coil region, or R52 or R53 in the alpha-helix; accordingly, representative mutants (K17A, R53A) blocked the Kv1.1 current with the same potency as the natural toxin. In contrast, competition of the binding of the radiolabelled alphaDTX or DTXk was dramatically reduced by alanine substitution of K26 or W25 in the beta-turn whereas changing nearby residues caused negligible alterations. Consistently, W25A and K26A exhibited diminished functional blockade of the Kv1.1 homo-oligomer. The 310-helical N-terminal region of DTXk was found to be responsible for recognition of Kv1.1 channels because mutation of K3A led to approximately 1246-fold reduction in the inhibitory potency for [125I]DTXk binding and a large decrease in its ability to block the Kv1.1 current; the effect of this substitution on the affinity of DTXk for Kv1.2-possessing oligomers was much less dramatic (approximately 16-fold).  相似文献   

9.
Zhu J  Yan J  Thornhill WB 《The FEBS journal》2012,279(15):2632-2644
The voltage-gated potassium channel Kv1.3 plays an essential role in modulating membrane excitability in many cell types. Kv1.3 is a heavily glycosylated membrane protein. Two successive N-glycosylation consensus sites, N228NS and N229ST, are present on the S1-S2 linker of rat Kv1.3. Our data suggest that Kv1.3 contains only one N-glycan and it is predominantly attached to N229 in the S1-S2 extracellular linker. Preventing N-glycosylation of Kv1.3 significantly decreased its surface protein level and surface conductance density level, which were ~?49% and ~?46% respectively of the level of wild type. Supplementation of N-acetylglucosamine (GlcNAc), l-fucose or N-acetylneuraminic acid to the culture medium promoted Kv1.3 surface protein expression, whereas supplementation of d-glucose, d-mannose or d-galactose did not. Among the three effective monosaccharides/derivatives, adding GlcNAc appeared to reduce sialic acid content and increase the degree of branching in the N-glycan of Kv1.3, suggesting that the N-glycan structure and composition had changed. Furthermore, the cell surface half-life of the Kv1.3 surface protein was increased upon GlcNAc supplementation, indicating that it had decreased internalization. The GlcNAc effect appears to apply mainly to membrane proteins containing complex type N-glycans. Thus, N-glycosylation promotes Kv1.3 cell surface expression; supplementation of GlcNAc increased Kv1.3 surface protein level and decreased its internalization, presumably by a combined effect of decreased branch size and increased branching of the N-glycan.  相似文献   

10.
1. The neurons of the retina have electrical properties that are different from those of most of the other neurons of the central nervous system. To identify the voltage-gated ion channels found in the retina, we screened mouse retinal cDNA libraries with oligonucleotide probes homologous to the mammalian K+ channel MBK1 (Kv1.1) and ligated two partial clones to produce a full-length clone with no significant differences from MBK1. 2. Expression of MBK1 mRNA was determined by RNAse protection. MBK1 mRNA was detected in retinal RNA and was also detected in brain, liver, and heart RNAs. 3. We transcribed the full-length clone, injected it into oocytes of Xenopus laevis, and measured the membrane currents 2 to 6 days later. Depolarization from a holding voltage of -90mV induced a slowly activated outward current with a peak value as large as 20 microA. The current inactivated very slowly with a single exponential time course [mean time constant, 6.5 +/- 0.4 sec (SEM) for activation voltage of -10mV]. 4. The outward current was reduced to half-maximal by 0.42 mM tetraethylammonium, 1.1 mM 4-aminopyridine, and 3.2 mM Ba2+ but was not significantly attenuated by Co2+ (1 mM). 5. The reversal potential (measured with tail currents) changed by 53mV per decade change of [K+] from 1 to 77 mM. 6. The voltage for half-maximal activation of the conductance was -26.6mV (+/- 1.7mV), and the voltage required for an e-fold increase in conductance was 6.9mV (+/- 0.5mV). 7. Thus, the mRNA for MBK1 found in the mouse retina causes the expression of a voltage-dependent K+ current which has properties suitable for may retinal neurons.  相似文献   

11.
Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses.  相似文献   

12.
The predominant K+ channel in human T lymphocytes is Kv1.3, which inactivates by a C-type mechanism. To study assembly of these tetrameric channels in Jurkat, a human T-lymphocyte cell line, we have characterized the formation of heterotetrameric channels between endogenous wild-type (WT) Kv1.3 subunits and heterologously expressed mutant (A413V) Kv1.3 subunits. We use a kinetic analysis of C-type inactivation of currents produced by homotetrameric channels and heterotetrameric channels to determine the distribution of channels with different subunit stoichiometries. The distributions are well- described by either a binomial distribution or a binomial distribution plus a fraction of WT homotetramers, indicating that subunit assembly is a random process and that tetramers expressed in the plasma membrane do not dissociate and reassemble. Additionally, endogenous Kv1.3 current is suppressed by a heterologously expressed truncated Kv1.3 that contains the amino terminus and the first two transmembrane segments. The time course for suppression, which is maximal at 48 h after transfection, overlaps with the time interval for heterotetramer formation between heterologously expressed A413V and endogenous WT channels. Our findings suggest that diversity of K+ channel subtypes in a cell is regulated not by spatial segregation of monomeric pools, but rather by the degree of temporal overlap and the kinetics of subunit expression.  相似文献   

13.
A novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da. It was found to block the human potassium channel hKv1.1 (IC(50)=4.6 microM). BTK-2 shows 40-70% sequence similarity to the family of the short-chain toxins that specifically block potassium channels. Multiple sequence alignment helps to categorize the toxin in the ninth subfamily of the K+ channel blockers. The modeled structure of BTK-2 shows an alpha/beta scaffold similar to those of the other short scorpion toxins. Comparative analysis of the structure with those of the other toxins helps to identify the possible structure-function relationship that leads to the difference in the specificity of BTK-2 from that of the other scorpion toxins. The toxin can also be used to study the assembly of the hKv1.1 channel.  相似文献   

14.
A novel nortriterpene, termed correolide, purified from the tree Spachea correae, inhibits Kv1.3, a Shaker-type delayed rectifier potassium channel present in human T lymphocytes. Correolide inhibits 86Rb+ efflux through Kv1.3 channels expressed in CHO cells (IC50 86 nM; Hill coefficient 1) and displays a defined structure-activity relationship. Potency in this assay increases with preincubation time and with time after channel opening. Correolide displays marked selectivity against numerous receptors and voltage- and ligand-gated ion channels. Although correolide is most potent as a Kv1.3 inhibitor, it blocks all other members of the Kv1 family with 4-14-fold lower potency. C20-29-[3H]dihydrocorreolide (diTC) was prepared and shown to bind in a specific, saturable, and reversible fashion (Kd = 11 nM) to a single class of sites in membranes prepared from CHO/Kv1.3 cells. The molecular pharmacology and stoichiometry of this binding reaction suggest that one diTC site is present per Kv1.3 channel tetramer. This site is allosterically coupled to peptide and potassium binding sites in the pore of the channel. DiTC binding to human brain synaptic membranes identifies channels composed of other Kv1 family members. Correolide depolarizes human T cells to the same extent as peptidyl inhibitors of Kv1.3, suggesting that it is a candidate for development as an immunosuppressant. Correolide is the first potent, small molecule inhibitor of Kv1 series channels to be identified from a natural product source and will be useful as a probe for studying potassium channel structure and the physiological role of such channels in target tissues of interest.  相似文献   

15.
Upregulation of Kv1.3 K(+) channels in microglia deactivated by TGF-beta   总被引:5,自引:0,他引:5  
Microglial activation is accompanied by changes inK+ channel expression. Here we demonstrate that adeactivating cytokine changes the electrophysiological properties ofmicroglial cells. Upregulation of delayed rectifier (DR) K+channels was observed in microglia after exposure to transforming growth factor- (TGF-) for 24 h. In contrast, inwardrectifier K+ channel expression was unchanged by TGF-.DR current density was more than sixfold larger in TGF--treatedmicroglia than in untreated microglia. DR currents of TGF--treatedcells exhibited the following properties: activation at potentials morepositive than 40 mV, half-maximal activation at 27 mV, half-maximalinactivation at 38 mV, time dependent and strongly use-dependentinactivation, and a single channel conductance of 13 pS in Ringersolution. DR channels were highly sensitive to charybdotoxin (CTX) andkaliotoxin (KTX), whereas -dendrotoxin had little effect.With RT-PCR, mRNA for Kv1.3 and Kir2.1 was detected in microglia. Inaccordance with the observed changes in DR current density, the mRNAlevel for Kv1.3 (assessed by competitive RT-PCR) increased fivefold after treatment of microglia with TGF-.

  相似文献   

16.
Ile-177 and Ser-180 are conserved residues in the first transmembrane segment (S1) of the Shaker, Shab, Shaw, and Shal subfamilies of voltage-gated K+ channels. Here we report that the mutation of these residues in Kv1.1 to leucine, proline, or arginine abolished the expression of outward potassium currents in Xenopus oocytes. Co-injection of these mutant cRNAs and wild type Kv1.1 cRNA into Xenopus oocytes exerted a potent dominant negative effect resulting in the suppression of Kv1.1-encoded currents. Transient transfection experiments of COS-7 cells revealed that the S1 mutants directed the synthesis of Kv1.1 polypeptides. Quantitative co-immunoprecipitation assays revealed that most of the S1 mutants co-assembled and formed both homo- and heteromultimeric complexes. Furthermore, the mutated polypeptides could reach the plasma membranes of transfected Sol8 cells. We conclude that mutations of Ile-177 and Ser-180 do not interfere with either the assembly of multimeric channel complexes or the targeting of these complexes to the plasma membrane. It is likely that these residues are involved in helix-helix interactions that are critical to the proper functioning of voltage-gated potassium channels.  相似文献   

17.
Minocycline is a semisynthetic, tetracycline derivative that exerts anti-inflammatory and neuroprotective effects unrelated to its anti-microbial action. We have previously shown that minocycline prevented peripheral nerve injury-induced mechanical allodynia. Minocycline's mechanisms of action as a neuroprotective and anti-allodynic agent are unknown. In response to injury, microglia become activated, proliferate, and migrate. Resting microglia express voltage-dependent inward K+ currents and blocking Kv1.3 channels has been shown to inhibit microglial-mediated neuronal death. We investigated the effect of minocycline on the expression of Kv channels, cell motility, and β-integrin expression using primary rat cortical microglia, transwell assays, and by flow cytometry. Minocycline significantly reduced microglial migration to cellular debris, astrocyte-conditioned medium, ADP, and algesic mediators and significantly reduced the expression of CD29 (β1-integrin) but not CD18 (β2-integrin). Minocycline reduced the effect of extracellular potassium and later decreased microglial Kv1.3 expression. In summary, we uncovered a novel effect of minocycline that demonstrates this agent decreases microglial β1-integrin expression, which leads to inhibition of motility. We propose an in vivo model whereby reduced microglial trafficking to injured neurons following nerve injury decreases the release of proinflammatory mediators into the synaptic milieu, preventing neuronal sensitization, the pathological correlate to chronic pain.  相似文献   

18.
Chlorotoxin has been isolated from the venom of the scorpion Leiurus quinquestriatus and characterized as a 4.1kDa peptide, containing a lysine at position 27 that is also present in many Kv-blocking toxins. Because chlorotoxin shows no affinity for Kv-channels, we intended to design, express and purify a chlorotoxin-chimer, containing the active binding site (beta-sheet) of a very potent Kv1-channel blocking peptide, agitoxin 2, by mutating three original residues in the chlorotoxin molecule. Several derivatives of the chimer, gradually missing one additional amino acid residue at the N-terminal side of the peptide, were produced and identified chromatographically. In contrast to chlorotoxin, these chimer derivatives are capable of blocking cloned Kv1-channels.  相似文献   

19.
The voltage-gated potassium channel, Kv1.3, is specifically expressed on human lymphocytes, where it controls membrane potential and calcium influx. Blockade of Kv1.3 channels by margatoxin was previously shown to prevent T cell activation and attenuate immune responses in vivo. In the present study, a triterpene natural product, correolide, was found to block Kv1.3 channels in human and miniswine T cells by electrophysiological characterization. T cell activation events, such as anti-CD3-induced calcium elevation, IL-2 production, and proliferation were inhibited by correolide in a dose-dependent manner. More potent analogs were evaluated for pharmacokinetic profiles and subsequently tested in a delayed-type hypersensitivity (DTH) response to tuberculin in the miniswine. Two compounds were dosed orally, iv, or im, and both compounds suppressed DTH responses, demonstrating that small molecule blockers of Kv1.3 channels can act as immunosuppressive agents in vivo. These studies establish correolide and its derivatives as novel immunosuppressants.  相似文献   

20.
This study aimed to comprehend the largely unknown role of voltage-gated potassium channel 1.3(Kv1.3) in the phagocytic function of macrophages. We found that blocking of the Kv1.3 channel with 100 pmol L-1 Stichodactyla helianthus neurotoxin(Sh K) enhanced the phagocytic capacities of both resting and lipopolysaccharide(LPS)-stimulated RAW264.7 macrophages in the chicken erythrocyte system. In the fluorescein isothiocyanate(FITC)-labeled Escherichia coli k-12 system, Sh K increased the phagocytic capacities of resting RAW264.7 cells, but not of the LPS-stimulated cells, as LPS alone stimulated almost saturated phagocytosis of the macrophages. Sh K increased the nitric oxide(NO) production in LPS-activated cells, but not in resting RAW264.7 cells. There was no effect of Sh K alone on the cytokine secretions in resting RAW264.7 cells, but it suppressed IL-1β secretion in LPS-stimulated RAW264.7 cells. At a concentration of 100 pmol L-1, Sh K did not affect the viability of the tested cells. Kv1.3 was expressed in RAW264.7 cells; this expression was downregulated by LPS, but significantly upregulated by disrupting caveolin-dependent endocytosis with filipin III. In addition, cytochalasin D, an inhibitor of actin polymerization, did not affect the Kv1.3 expression. Thus, blocking of the Kv1.3 channel enhances the phagocytic capacity and NO production of this cell line. Our results suggest that Kv1.3 channel serves as a negative regulator of phagocytosis in macrophages and can therefore be a potential target in the treatment of macrophage dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号