首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The formation, relative stability, and possible stoichiometries of two (self-)complementary peptide sequences (B and E) designed to form either a parallel homodimeric (B + B) or an antiparallel heterodimeric (B + E) coiled coil have been investigated. Peptide B shows a characteristic coiled coil pattern in circular dichroism spectra at pH 7.4, whereas peptide E is apparently random coiled under these conditions. The peptides are complementary to each other, with peptide E forming a coiled coil when mixed with peptide B. Molecular dynamics simulations show that combinations of B + B and B + E readily form a dimeric coiled coil, whereas E + E does not fall in line with the experimental data. However, the simulations strongly suggest the preferred orientation of the helices in the homodimeric coiled coil is antiparallel, with interactions at the interface quite different to that of the idealized model. In addition, molecular dynamics simulations suggest equilibrium between dimers, trimers, and tetramers of alpha-helices for peptide B.  相似文献   

3.
We have de novo designed a heterodimeric coiled-coil formed by two peptides as a capture/delivery system that can be used in applications such as affinity tag purification, immobilization in biosensors, etc. The two strands are designated as K coil (KVSALKE heptad sequence) and E coil (EVSALEK heptad sequence), where positively charged or negatively charged residues occupy positions e and g of the heptad repeat. In this study, for each E coil or K coil, three peptides were synthesized with lengths varying from three to five heptads. The effect of the chain length of each partner upon the kinetic and thermodynamic constants of interaction were determined using a surface plasmon resonance-based biosensor. Global fitting of the interactions revealed that the E5 coil interacted with the K5 coil according to a simple binding model. All the other interactions involving shorter coils were better described by a more complex kinetic model involving a rate-limiting reorganization of the coiled-coil structure. The affinities of these de novo designed coiled-coil interactions were found to range from 60 pM (E5/K5) to 30 microM (E3/K3). From these K(d) values, we were able to determine the free energy contribution of each heptad, depending on its relative position within the coiled-coils. We found that the free energy contribution of a heptad occupying a central position was 3-fold higher than that of a heptad at either end of the coiled-coil. The wide range of stabilities and affinities for the E/K coil system provides considerable flexibility for protein engineering and biotechnological applications.  相似文献   

4.
Suzuki K  Yamada T  Tanaka T 《Biochemistry》1999,38(6):1751-1756
The macrophage scavenger receptor exhibits a pH-dependent conformational change around the carboxy-terminal half of the alpha-helical coiled coil domain, which has a representative amino acid sequence of a (defgabc)n heptad. We previously demonstrated that a peptide corresponding to this region formed a random coil structure at pH 7 and an alpha-helical coiled coil structure at pH 5 [Suzuki, K., Doi, T., Imanishi, T., Kodama, T., and Tanaka, T. (1997) Biochemistry 36, 15140-15146]. To determine the amino acid responsible for the conformational change, we prepared several peptides in which the acidic amino acids were replaced with neutral amino acids. Analyses of their structures by circular dichroism and sedimentation equilibrium gave the result that the presence of Glu242 at the d position was sufficient to induce the pH-dependent conformational change of the alpha-helical coiled coil domain. Furthermore, we substituted a Glu residue for the Ile residue at the d or a position of a de novo designed peptide (IEKKIEA)4, which forms a highly stable triple-stranded coiled coil. These peptides exhibited a pH-dependent conformational change similar to that of the scavenger receptor. Therefore, we conclude that a buried Glu residue in the hydrophobic core of a triple-stranded coiled coil has the potential to induce the pH-dependent conformational change. This finding makes it possible to elucidate the functions of natural proteins and to create a de novo protein designed to undergo a pH-dependent conformational change.  相似文献   

5.
A thermodynamic model is presented that describes the binding of Hg(II) to de novo designed peptides, Tri L9C and Baby L9C, which were derived from the Tri family. The Tri peptides are based on the parent sequence Ac-NH-G(LKALEEK)(x)()G-CONH(2) and are known to form two-stranded coiled coils at low pH (pH <4) and three-stranded coiled coils at high pH (pH >7). Tri L9C (x = 4) contains a four heptad repeat sequence with cysteine in position 9 and leucines in the other a and d positions; Baby L9C (x = 3), which also has a cysteine in position 9 but is one heptad shorter than Tri L9C, was designed to form less stable helical coiled coils in solution. The free energies of coiled coil formation for Tri, Tri L9C, Baby Tri, and Baby L9C at pH 2.5 and 8.5 were determined by guanidinium denaturation titrations; Tri L9C was observed to be highly helical in the absence of denaturant at pH 8.5 while Baby L9C contained <20% helical content at pH 8.5, indicating a weakly associated or unassociated coiled coil. Size-exclusion chromatography (SEC) verified that Baby L9C was a monomer at pH 8.5. The helicity of Baby L9C was induced by addition of HgCl(2). The subsequent formation of a trigonal thiolato Hg(II) in the interior of a three-stranded coiled coil was verified by the presence of a characteristic HgS(3) UV band at 248 nm. Titrations of Tri L9C and Baby L9C into solutions of HgCl(2) at pH values between 7 and 9 were performed to extract binding constants. Global fits to the data employed a mechanism that involved initial binding of mercury to the peptides forming a two-stranded coiled coil with linear thiolato Hg(II) at [peptide]/[Hg] <2, followed by addition of a more weakly associated third helix to generate a three-stranded coiled coil. This mechanism would require the deprotonation of the third cysteine thiol to generate the trigonal thiolato Hg(II) at pH >7.5 [the pK(a) of the cysteine thiol in the presence of Hg(II)]. Support for this mechanism was given by the observation of a three-stranded coiled coil by SEC in a solution of Tri L9C at pH 7.0.  相似文献   

6.
The coiled‐coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled‐coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a “stutter,” a deviation of the idealized heptad repeat that is found in the central coiled‐coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter‐containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled‐coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH‐dependent coiled‐coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled‐coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH‐dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. Proteins 2014; 82:2220–2228. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The α-helical coiled coil is a valuable folding motif for protein design and engineering. By means of phage display technology, we selected a capable binding partner for one strand of a coiled coil bearing a charged amino acid in a central hydrophobic core position. This procedure resulted in a novel coiled coil pair featuring an opposed Glu-Lys pair arranged staggered within the hydrophobic core of a coiled coil structure. Structural investigation of the selected coiled coil dimer by CD spectroscopy and MD simulations suggest that a buried salt bridge within the hydrophobic core enables the specific dimerization of two peptides.  相似文献   

8.
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N‐ and C‐termini. In the crystal, two monomers cross in 35° and form an X‐shaped dimer, and each X‐shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two‐stranded, parallel, super long coiled coil rather than a discrete, two‐helix coiled coil of the wild‐type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild‐type leucine zipper, the N‐terminus of the mutant has a dramatic conformational change and the C‐terminus has one more residue Glu 32 determined. The mutant X‐shaped dimer has a large crossing angle of 35° instead of 18° in the wild‐type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self‐assembling protein fibers.  相似文献   

9.
The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented.  相似文献   

10.
Tripartite motif (TRIM) proteins comprise a large family of RING‐type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled‐coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher‐order oligomerization of the basal coiled‐coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.  相似文献   

11.
Nitric oxide induces vasodilation by elevating the production of cGMP, an activator of cGMP-dependent protein kinase (PKG). PKG subsequently causes smooth muscle relaxation in part via activation of myosin light chain phosphatase (MLCP). To date, the interaction between PKG and the targeting subunit of MLCP (MYPT1) is not fully understood. Earlier studies by one group of workers showed that the binding of PKG to MYPT1 is mediated by the leucine-zipper motifs at the N and C termini, respectively, of the two proteins. Another group, however, reported that binding of PKG to MYPT1 did not require the leucine-zipper motif of MYPT1. In this work we fully characterized the interaction between PKG and MYPT1 using biophysical techniques. For this purpose we constructed a recombinant PKG peptide corresponding to a predicted coiled coil region that contains the leucine-zipper motif. We further constructed various C-terminal MYPT1 peptides bearing various combinations of a predicted coiled coil region, extensions preceding this coiled coil region, and the leucine-zipper motif. Our results show, firstly, that while the leucine-zipper motif at the N terminus of PKG forms a homodimeric coiled coil, the one at the C terminus of MYPT1 is monomeric and non-helical. Secondly, the leucine-zipper motif of PKG binds to that of MYPT1 to form a heterodimer. Thirdly, when the leucine-zipper motif of MYPT1 is absent, the PKG leucine-zipper motif binds to the coiled coil region and upstream segments of MYPT1 via formation of a heterotetramer. These results provide rationalization of some of the findings by others using alternative binding analyses.  相似文献   

12.
Cytohesin is a guanine nucleotide exchange factor that regulates members of the ADP-ribosylation factor (ARF) family of small GTPases. All of the members of the cytohesin family (including ARNO, ARNO3, and the newly characterized cytohesin-4) have a similar domain distribution consisting of a Sec7 homology domain, a pleckstrin homology domain, and an N-terminal coiled coil. In this study, we attempt to identify proteins that interact specifically with the coiled coil motif of cytohesin. Yeast two-hybrid screening of a B cell library using the cytohesin N terminus as bait, identified CASP, a scaffolding protein of previously unknown function, as a binding partner. CASP contains an internal coiled coil motif that is required for cytohesin binding both in vitro and in COS-1 cells. The specificity of the coiled coil of CASP is not restricted to cytohesin, however, because it is also capable of interacting with other members of the cytohesin/ARNO family, ARNO and ARNO3. In immunofluorescence experiments, CASP localizes to perinuclear tubulovesicular structures that are in close proximity to the Golgi. These structures remain relatively undisturbed when the cells are treated with brefeldin A. In epidermal growth factor-stimulated COS-1 cells overexpressing cytohesin and CASP, cytohesin recruits CASP to membrane ruffles, revealing a functional interaction between the two proteins. These observations collectively suggest that CASP is a scaffolding protein that facilitates the function of at least one member of the cytohesin/ARNO family in response to specific cellular stimuli.  相似文献   

13.
Peptide 'Velcro': design of a heterodimeric coiled coil   总被引:14,自引:0,他引:14  
  相似文献   

14.
The short coiled coil protein (SCOC) forms a complex with fasciculation and elongation protein zeta 1 (FEZ1). This complex is involved in autophagy regulation. We determined the crystal structure of the coiled coil domain of human SCOC at 2.7 Å resolution. SCOC forms a parallel left handed coiled coil dimer. We observed two distinct dimers in the crystal structure, which shows that SCOC is conformationally flexible. This plasticity is due to the high incidence of polar and charged residues at the core a/d-heptad positions. We prepared two double mutants, where these core residues were mutated to either leucines or valines (E93V/K97L and N125L/N132V). These mutations led to a dramatic increase in stability and change of oligomerisation state. The oligomerisation state of the mutants was characterized by multi-angle laser light scattering and native mass spectrometry measurements. The E93V/K97 mutant forms a trimer and the N125L/N132V mutant is a tetramer. We further demonstrate that SCOC forms a stable homogeneous complex with the coiled coil domain of FEZ1. SCOC dimerization and the SCOC surface residue R117 are important for this interaction.  相似文献   

15.
We have designed, synthesized, and characterized peptides containing four repeats of the sequences VAALEKE (peptide E) or VAALKEK (peptide K). While the peptides alone adopt in aqueous solutions a random coil conformation, their equimolar mixture forms heterodimeric coiled coils as confirmed by CD spectroscopy. 5-Azidopentanoic acid was connected to the N-terminus of peptide E via a short poly(ethylene glycol) spacer. The terminal azide group enabled conjugation of the peptide with a synthetic drug carrier based on the N-(2-hydroxypropyl)methacrylamide copolymer containing propargyl groups using "click" chemistry. When incorporated into the polymer drug carrier, peptide E formed a stable noncovalent complex with peptide K belonging to a recombinant single-chain fragment (scFv) of the M75 antibody. The complex thereby mediates a noncovalent linkage between the polymer drug carrier and the protein. The recombinant scFv antibody fragment was selected as a targeting ligand against carbonic anhydrase IX-a marker overexpressed by tumor cells of various human carcinomas. The antigen binding affinity of the polymer-scFv complex was confirmed by ELISA. This approach offers a well-defined, specific, and nondestructive universal method for the preparation of protein (antibody)-targeted polymer drug and gene carriers designed for cell-specific delivery.  相似文献   

16.
The aim of this study was to investigate the influence of multiple O-glycosylation in α-helical coiled coil peptides on the folding and stability. For this purpose we systematically incorporated one to six β-galactose residues into the solvent exposed positions of a 26 amino acid long coiled coil helix. Surprisingly, circular dichroism spectroscopy showed no unfolding of the coiled coil structure for all glycopeptides. Thermally induced denaturations reveal a successive but relative low destabilization of the coiled coil structure upon introduction of β-galactose residues. These first results indicate that O-glycosylation of the glycosylated variants is easily tolerated by this structural motif and pave the way for further functional studies.  相似文献   

17.
The E/K coil, a heterodimeric coiled-coil, has been designed as a universal peptide capture and delivery system for use in applications such as biosensors and as an expression and affinity purification tag. In this design, heterodimer formation is specified through the placement of charged residues at the e and g positions of the heptad repeat such that the E coil contains all glutamic acid residues at these positions, and the K coil contains all lysine residues at these positions. The affinity and stability of the E/K coil have been modified to allow a greater range of conditions for association and dissociation. Increasing the hydrophobicity of the coiled-coil core, by substituting isoleucine for valine, gave increases in stability of 2.81 and 3.73 kcal/mol (0.47 kcal/mol/substitution). Increasing the alpha-helical propensity of residues outside the core, by substituting alanine for serine, yielded increases in stability of 2.68 and 3.28 kcal/mol (0.41 and 0.45 kcal/mol/substitution). These sequence changes yielded a series of heterodimeric coiled-coils whose stabilities varied from 6.8 to 11.2 kcal/mol, greatly expanding their scope for use in protein engineering and biomedical applications.  相似文献   

18.
19.
Autophagosome biogenesis requires two ubiquitin‐like conjugation systems. One couples ubiquitin‐like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin‐like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P‐containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β‐propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled‐coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6‐motif in the N‐terminal helical domain of Atg8, but not its AIM‐binding site. Accordingly, the Atg8 AIM‐binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P‐dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号