首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
World requirements for fossil energy are expected to grow by more than 50% within the next 25 years, despite advances in alternative technologies. Since conventional production methods retrieve only about one-third of the oil in place, either large new fields or innovative strategies for recovering energy resources from existing fields are needed to meet the burgeoning demand. The anaerobic biodegradation of n-alkanes to methane gas has now been documented in a few studies, and it was speculated that this process might be useful for recovering energy from existing petroleum reservoirs. We found that residual oil entrained in a marginal sandstone reservoir core could be converted to methane, a key component of natural gas, by an oil-degrading methanogenic consortium. Methane production required inoculation, and rates ranged from 0.15 to 0.40 micromol/day/g core (or 11 to 31 micromol/day/g oil), with yields of up to 3 mmol CH(4)/g residual oil. Concomitant alterations in the hydrocarbon profile of the oil-bearing core revealed that alkanes were preferentially metabolized. The consortium was found to produce comparable amounts of methane in the absence or presence of sulfate as an alternate electron acceptor. Cloning and sequencing exercises revealed that the inoculum comprised sulfate-reducing, syntrophic, and fermentative bacteria acting in concert with aceticlastic and hydrogenotrophic methanogens. Collectively, the cells generated methane from a variety of petroliferous rocks. Such microbe-based methane production holds promise for producing a clean-burning and efficient form of energy from underutilized hydrocarbon-bearing resources.  相似文献   

2.
Anaerobic digestion of cattle manure was studied under thermophilic and mesophilic conditions with the purpose of evaluating the effect of temperature on the quality of the final digestate. Non-isothermal thermogravimetric kinetic analysis was applied for assessing organic matter conversion of biological stabilization. The mathematical approximation proves to be a useful tool for evaluating the differences attained during biological degradation. The anaerobic digestion of the organic substrate resulted in a reduction of the activation energy value obtained from the different applied kinetic models. Results obtained from thermal kinetic analysis were in accordance with those from the monitoring of the anaerobic digestion process. The higher values of methane yield reported for the mesophilic digestion in comparison to that of the thermophilic indicated a greater capability of the former process in the utilization of substrate and thus a higher conversion of organic matter which can be quantified by the activation energy value.  相似文献   

3.
An elemental analysis was applied to describe the composition ofthe organic fraction of municipal solid waste (MSW). The initial elemental composition was constant at5H8.5O4N0.2. The changes of the composition during the biodegradation process and the final waste composition were strictly dependent on the process conditions. The decrease in carbon content due to biodegradation increased with temperature at which the experiments were conducted, from 20% at20 °C to about 40% at 37–42 °C after 96 hours. It was correlatedwith the amount of oxygen that was utilised in the investigated processes of aerobicbiodegradation of the waste suspension. The amount of oxygen required for biodegradation of organic fraction of MSW was estimated on the basis of stoichiometric equations and increased from 0.92 moles per 1 mole of waste at 20 °C to 1.6 moles at 42 °C within 96 hours of the experiments.  相似文献   

4.
The kinetics of the cellulase-catalyzed conversion of soluble cellulose into glucose have been studied over a range of substrate concentrations and temperatures, and at pH values ranging from 4.75 to 7.0. Lineweaver-Burk plots were linear and led to V = 6.2muM/s and K(m) = 13.1 mM at pH 5.8 and 25.0 degrees C. The pK values corresponding to the free enzyme are 4.8 and 6.8 and are consistent with carboxyl and imidazole groups as the active ionizing species. These pK values were little changed in the enzyme-substrate intermediate that reacts in the ratedetermining step, suggesting that the ionizing groups are still free in this intermediate. The activation energy corresponding to V/K(m) is 80.6 kJ/mol, and that corresponding to V is 38.7 kJ/mol. The corresponding entropies of activation are 21 J K(-1) mol(-1) and -157 J K(-1) mol(-1), respectively.  相似文献   

5.
Hybrid models aim to describe different components of a process in different ways. This makes sense when the corresponding knowledge to be represented is different as well. In this way, the most efficient representations can be chosen and, thus, the model performance can be increased significantly. From the various possible variants of hybrid model, three are selected which were applied for important biotechnical processes, two of them from existing production processes. The examples show that hybrid models are powerful tools for process optimisation, monitoring and control.  相似文献   

6.
2-(p-Iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) dehydrogenase test and RNA assay were introduced to evaluate biomass in the processes of aerobic biodegradation of the organic fraction of municipal solid waste (MSW) in bioreactors. It was found that RNA quantification by KOH/UV method delivered reliable and repeatable results. Relative standard deviation (RSD) for INT test was significantly higher than for RNA assay and achieved values of 3-15%. Moreover, it occurred that the optimum temperature for the growth of autochthonic biomass, which takes part in the biodegradation process, was in the range from 25 to 37 degrees C.  相似文献   

7.
The kinetic model of biological oxidation of the organic fraction of municipal solid waste suspension is presented in this paper. The whole process of the aerobic biodegradation consists of three phases: the hydrolysis and intensive biodegradation phase, the limited biodegradation phase and the terminal phase. The first two phases play the most important role and the unstructured model is applied to successfully describe them. Kinetics of microbial decomposition of organic substances is described by the Monod equation. Also, a strong influence of temperature on the process kinetics is observed. The relation between a maximum specific growth rate and temperature is mathematically described.  相似文献   

8.
A range of cellulosic raw materials in the form of agricultural crop residue was analyzed for chemical composition and assessed for potential yields of sugars through chemical pretreatment and enzymatic hydrolysis of these materials. Corn stover was used as a representative raw material for a preliminary process design and economic assessment of the production of sugars and ethanol. With the process as presently developed, 24 gal ethanol can be obtained per ton of corn stover at a processing cost of about $1.80/gal exclusive of by-product credits. The analysis shows the cost of ethanol to be highly dependent upon: (1) the cost of the biomass, (2) the extent of conversion to glucose, (3) enzyme recovery and production cost, and (4) potential utilization of xylose. Significant cost reduction appears possible through further research in these directions.  相似文献   

9.
The transformation of organic matter during anaerobic digestion of mixtures of energetic crops, cow slurry, agro-industrial waste and organic fraction of municipal solid waste (OFMSW) was studied by analysing different samples at diverse points during the anaerobic digestion process in a full-scale plant. Both chemical (fiber analysis) and spectroscopic approaches (13C CPMAS NMR) indicated the anaerobic digestion process proceeded by degradation of more labile fraction (e.g. carbohydrate-like molecules) and concentration of more recalcitrant molecules (lignin and non-hydrolysable lipids). These modifications determined a higher degree of biological stability of digestate with respect to the starting mixture, as suggested, also, by the good correlations found between the cumulative oxygen uptake (OD20), and the sum of (cellulose + hemicellulose + cell soluble) contents of biomasses detected by fiber analysis (r = 0.99; P < 0.05), and both O–alkyl-C (r = 0.98; P < 0.05) and alkyl-C (r = −0.99; P < 0.05) measured by 13C CPMAS NMR.  相似文献   

10.
11.
Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small‐scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Biotechnol. Bioeng. 2013; 110:2425–2435. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
A minor pathway for dopamine oxidation to dopaminochrome, by tyrosinase, is proposed. Characterization of intermediates in this oxidative reaction and stoichiometric determination have both been undertaken. After oxidizing dopamine with mushroom tyrosinase or sodium periodate in a pH range from 6.0 to 7.0, it was spectrophotometrically possible to detect o-dopaminoquinone-H+ as the first intermediate in this pathway. The steps for dopamine transformation to dopaminochrome are as follows: dopamine → o-dopaminequinone-H+o-dopaminequinone → leuko-dopaminochrome → dopaminochrome. No participation of oxygen was detected in the conversion of leukodopaminochrome to dopaminochrome. Scanning spectroscopy and graphical analysis of the obtained spectra also verified that dopaminequinone-H+ was transformed into aminochrome in a constant ratio. The stoichiometry equation for this conversion is 2 o-dopaminequinone-H+ → dopamine + dopaminochrome. The pathway for dopamine oxidation to dopaminochrome by tyrosinase has been studied as a system of various chemical reactions coupled to an enzymatic reaction. A theoretical and experimental kinetic approach is proposed for such a system; this type of mechanism has been named “Enzymatic-chemical-chemical” (EZCC). Rate constants for the implied chemical steps at different pH and temperature values have been evaluated from the measurement of the lag period arising from the accumulation of dopaminochrome that took place when dopamine was oxidized at acid pH. The thermodynamic activation parameters of the chemical steps, the deprotonation of dopaminequinone-H+ to dopaminequinone, and the internal cyclization of dopaminequinone to leukodopaminochrome have been calculated.  相似文献   

13.
Mouse alveolar surfactant can be separated by equilibrium centrifugation on continuous sucrose gradients into three subtypes which we call "ultraheavy", "heavy", and "light" on the basis of their buoyant densities. We examined their metabolic relationship by in vivo labeling studies and by physical manipulation, cycling the surface area in vitro in an attempt to convert one subtype into another. Labeling studies indicated rapid quantitative progression of surfactant through ultraheavy, heavy, and light subtypes in sequence. To mimic the in vivo conversion of subtypes in vitro we "cycled" the surface area of surfactant in plastic tubes. Newly secreted surfactant obtained from incubated lungs, as well as surfactant obtained by alveolar lavage and lamellar bodies, exhibited conversion of material from heavier to lighter subtypes. The conversion between subtypes was quantal and was dependent on cycling, temperature, and time. We conclude that the three subtypes are discrete forms of alveolar surfactant that evolve from one into another. Cycling may provide a means to study the mechanisms of their interconversion in vitro.  相似文献   

14.
Surfactant-induced unfolding is a significant degradation pathway for detergent enzymes. This study examines the kinetics of surfactant-induced unfolding for endoglucanase III, a detergent cellulase, under conditions of varying pH, temperature, ionic strength, surfactant type, and surfactant concentration. Interactions between protein and surfactant monomer are shown to play a key role in determining the kinetics of the unfolding process. We demonstrate that the unfolding rate can be slowed by (1) modifying protein charge and/or pH conditions to create electrostatic repulsion of ionic surfactants and (2) reducing the amount of monomeric ionic surfactant available for interaction with the enzyme (i.e., by lowering the critical micelle concentration). Additionally, our results illustrate that there is a poor correlation between thermodynamic stability in buffer (DeltaG(unfolding)) and resistance to surfactant-induced unfolding.  相似文献   

15.
Sato  Hajime  Kida  Morimaru  Yamano  Satoko  Sonoda  Haruka  Fujitake  Nobuhide 《Limnology》2019,20(2):215-224
Limnology - The organic-Fe association in Scottish freshwater rivers has received little attention compared with in the estuarine mixing zone. We collected 201 water samples from rivers and lakes...  相似文献   

16.
S. Zilkah  J. Gressel 《Planta》1979,145(3):273-278
Because of uniformity and small distances for transport, cell suspensions offer a system for rapid measurements of initial reactions of phytotoxic compounds. We had previously shown that a growth regulator, dikegulac (2,3:4,6 di-o-isopropylidine-2-keto-L-gulonate) inhibits amino acid incorporation into proteins. Using Solanum nigrum suspension cultures, it was found that dikegulac rapidly inhibits amino acid uptake into cells, before inhibiting incorporation, with time points starting at a few minutes, and kinetics that can be extrapolated back to time zero. With more rapid kinetics this compound induces leakage of a preloaded dye. The rate of leakage was less with stationary cells in suspension, reiterating that they are more resistant to the effects of this compound. It was thus concluded that at the concentrations used, the first effect of dikegulac (or one very close to the first effect) is on the cell membrane.Abbreviation FDA fluorescein diacetate  相似文献   

17.
Two 5 L anaerobic reactors were used to monitor the mesophilic anaerobic digestion of source sorted organic fraction of municipal solid wastes (SS-OFMSW) focusing the attention on the response of alkalinity ratios. Intermediate/partial alkalinity (IA/PA) ratio can be used as a simple and cheaper alternative to VFAs analysis when digester's stability needs to be assessed in full-scale plants treating these organic wastes. However, lab-scale studies in order to establish a specific limit value of IA/PA referred to SS-OFMSW had not been conducted. In this study, a reference reactor (R1) was operated at low organic loading rates (OLR) and high hydraulic retention times (HRT) during 165 days. Besides, severe disturbances were applied to a second reactor (R2) during 281 days by means of increasing both HRT and OLR in order to assess the digester response under continuous overload conditions. The obtained results show that an IA/PA ratio of below 0.3 is recommended to maintain total VFAs between 2.5 and 3.5 kg m−3 and achieve a stable reactor performance treating SS-OFMSW in a range of total alkalinity (TA) between 13 and 15 kg CaCO3 m−3. These results provide a starting point to develop further works in full-scale digesters, in order to improve the monitoring and process control of full-scale anaerobic reactors treating SS-OFMSW.  相似文献   

18.
Vocadlo DJ  Wicki J  Rupitz K  Withers SG 《Biochemistry》2002,41(31):9727-9735
The catalytic mechanism of Thermoanaerobacterium saccharolyticum beta-xylosidase (XynB) from family 39 of glycoside hydrolases has been subjected to a detailed kinetic investigation using a range of substrates. The enzyme exhibits a bell-shaped pH dependence of k(cat)/K(m), reflecting apparent pK(a) values of 4.1 and 6.8. The k(cat) and k(cat)/K(m) values for a series of aryl xylosides have been measured and used to construct two Br?nsted plots. The plot of log(k(cat)/K(m)) against the pK(a) of the leaving group reveals a significant correlation (beta(lg) = -0.97, r(2) = 0.94, n = 8), indicating that fission of the glycosidic bond is significantly advanced in the transition state leading to the formation of the xylosyl-enzyme intermediate. The large negative value of the slope indicates that there is relatively little proton donation to the glycosidic oxygen in the transition state. A biphasic, concave-downward plot of log(k(cat)) against pK(a) provides good evidence for a two-step double-displacement mechanism involving a glycosyl-enzyme intermediate. For activated leaving groups (pK(a) < 9), the breakdown of the xylosyl-enzyme intermediate is the rate-determining step, as indicated by the absence of any effect of the pK(a) of the leaving group on log(k(cat)) (beta(lg) approximately 0). However, a strong dependence of the first-order rate constant on the pK(a) value of relatively poor leaving groups (pK(a) > 9) suggests that the xylosylation step is rate-determining for these substrates. Support for the dexylosylation chemical step being rate-determining for activated substrates comes from nucleophilic competition experiments in which addition of dithiothreitol results in an increase in turnover rates. Normal secondary alpha-deuterium kinetic isotope effects ((alpha-D)(V) or (alpha-D)(V/K) = 1.08-1.10) for three different substrates of widely varying pK(a) value (5.15-9.95) have been measured and these reveal that the transition states leading to the formation and breakdown of the intermediate are similar and both steps involve rehybridization of C1 from sp(3) to sp(2). These results are consistent only with "exploded" transition states, in which the saccharide moiety bears considerable positive charge, and the intermediate is a covalent acylal-ester where C1 is sp(3) hybridized.  相似文献   

19.
It is an established fact that radon progeny can induce lung cancers. However, there is a well-known discrepancy between the epidemiologically derived dose conversion factor for radon progeny (4 mSv/WLM) and the dosimetrically derived value (15 mSv/WLM) (mSv is a unit of the dose while WLM is a unit of exposure to radon progeny). Up to now there is no satisfactory explanation to this. In the present study we propose that microdosimetry will help reduce the discrepancy significantly. The ICRP Human Respiratory Tract Model (HRTM) has been applied to calculate the effective dose conversion factor. All parameters have been kept at their best estimates. Modifications were made in the calculation of the absorbed fractions of alpha particles. In contrast to the ICRP approach where the energy has been considered to be deposited in the layer containing the sensitive cells, we used a microdosimetric approach in which the alpha particles deposit their energy only in the nuclei of sensitive cells. This modification alone has lowered the dose conversion factor by about one-third (from 15 mSv/WLM down to approximately 10 mSv/ WLM). Received: 19 February 2001 / Accepted: 10 July 2001  相似文献   

20.
Capsaicinoids are the pungent compounds in Capsicum fruits (i.e., "hot" peppers). Peroxidases catalyze capsaicinoid oxidation and may play a central role in their metabolism. However, key kinetic aspects of peroxidase-catalyzed capsaicinoid oxidation remain unresolved. Using transient-state methods, we evaluated horseradish peroxidase compound I and II reduction by two prominent capsaicinoids (25 degrees C, pH 7.0). We determined rate constants approaching 2 x 10(7) and 5 x 10(5)M(-1)s(-1) for compound I and compound II reduction, respectively. We also determined k(app) values for steady-state capsaicinoid oxidation approaching 8 x 10(5)M(-1)s(-1) (25 degrees C, pH 7.0). Accounting for stoichiometry, these are in excellent agreement with constants for compound II reduction, suggesting that this reaction governs capsaicinoid-dependent peroxidase turnover. Ascorbate rapidly reduced capsaicinoid radicals, assisting in the determination of the kinetic constants reported. Because ascorbate accumulates in Capsicum fruits, it may also be an important determinant for capsaicinoid content and preservation in Capsicum fruits and related products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号