首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The epidermal growth factor (EGF) superfamily comprises a diverse group of proteins that function as secreted signaling molecules, growth factors, and components of the extracellular matrix, many with a role in vertebrate development. We have isolated a novel mammalian gene encoding an EGF-related protein with a CUB (C1s-like) domain that defines a new mammalian gene family. The Scube1 (signal peptide-CUB domain-EGF-related 1) gene was isolated from a developing mouse urogenital ridge cDNA library and is expressed prominently in the developing gonad, nervous system, somites, surface ectoderm, and limb buds. We have mapped Scube1 to mouse chromosome 15 and show that it is orthologous to a human gene in the syntenic region of chromosome 22q13. We discuss the possible functions of this novel gene and its role in heritable disease in light of these data.  相似文献   

4.
5.
The Hedgehog (Hh) signal plays a pivotal role in induction of ventral neuronal and muscle cell types around the midline during vertebrate development [1]. We report that the gene disrupted in zebrafish you mutants, in which Hh signaling is impaired, encodes the secreted matrix protein Scube2. Consistently, epistasis analyses suggested that Scube2 functions upstream of Hh ligands or through a parallel pathway. In addition, overexpression analyses suggested that Scube2 is an essential, but a permissive, mediator of Hh signaling in zebrafish embryos. Surprisingly, the you gene is expressed in the dorsal neural tube, raising the possibility that Scube2 could indirectly act via a long-range regulator of Hh signaling. The dorsal Bmps have a long-range and opposing influence on Hh signaling [2-5]. We show that neural plate patterning is affected in you mutants in a way that is consistent with the aberrant long-range action of a Bmp-dependent signal. We further show that Bmp activity can be attenuated by the coexpression of Scube2. Our data support the idea that Scube2 can modulate the long-range action of Bmp-dependent signaling in the neural tube and somites.  相似文献   

6.
The Hedgehog family of secreted morphogens specifies the fate of a large number of different cell types within invertebrate and vertebrate embryos, including the muscle cell precursors of the embryonic myotome of zebrafish. Formation of Hedgehog-sensitive muscle fates is disrupted within homozygous zebrafish mutants of the "you"-type class, the majority of which disrupt components of the Hedgehog (HH) signal transduction pathway. We have undertaken a phenotypic and molecular characterisation of one of these mutants, you, which we show results from mutations within the zebrafish orthologue of the mammalian gene scube2. This gene encodes a member of the Scube family of proteins, which is characterised by several protein motifs including EGF and CUB domains. Epistatic and molecular analyses position Scube2 function upstream of Smoothened (Smoh), the signalling component of the HH receptor complex, suggesting that Scube2 may act during HH signal transduction prior to, or during, receipt of the HH signal at the plasma membrane. In support of this model we show that scube2 has homology to cubilin, which encodes an endocytic receptor involved in protein trafficking suggesting a possible mode of function for Scube2 during HH signal transduction.  相似文献   

7.
The SCUBE gene family encode secreted, extracellular proteins that share a distinct domain organization of at least five recognizable motifs, including an amino-terminal signal peptide sequence, multiple EGF-like domains, a large spacer region containing multiple N-linked glycosylation sites, three repeated stretches of six-cysteine residues and a carboxy-terminal CUB domain. We describe a Scube3(tm1Dge/H) targeted allele, which replaces the entire coding region for Exons 2 and 3 with a neomycin-lacZ selectable marker cassette predicted to delete the first two EGF-like domains of the transcribed protein. Scube3(+/tm1Dge/H) embryos demonstrate strong β-galactosidase activity in the early facial epithelium, including the branchial arches and facial processes, the otic vesicle, limb buds, and neural tube. In addition, strong reporter activity was identified in the epithelial compartments of developing teeth and hair follicles. However, analysis of the Scube3(tm1Dge/H) allele revealed that it encodes a truncated protein, which contains part of the spacer region and CUB domain. It is likely that this protein retains functionality because our analysis reveals that Scube3(tm1Dge/H; tm1Dge/H) mice are phenotypically normal. Whilst acting as a useful reporter, these mice do not provide any insight into the potential role of Scube3 during embryonic development.  相似文献   

8.
The Hedgehog (Hh) signaling pathway plays critical roles in metazoan development and in cancer. How the Hh ligand is secreted and spreads to distant cells is unclear, given its covalent modification with a hydrophobic cholesterol molecule, which makes it stick to membranes. We demonstrate that Hh ligand secretion from vertebrate cells is accomplished via two distinct and synergistic cholesterol-dependent binding events, mediated by two proteins that are essential for vertebrate Hh signaling: the membrane protein Dispatched (Disp) and a member of the Scube family of secreted proteins. Cholesterol modification is sufficient for a heterologous protein to interact with Scube and to be secreted in a Scube-dependent manner. Disp and Scube recognize different structural aspects of cholesterol similarly to how Niemann-Pick disease proteins 1 and 2 interact with cholesterol, suggesting a hand-off mechanism for transferring Hh from Disp to Scube. Thus, Disp and Scube cooperate to dramatically enhance the secretion and solubility of the cholesterol-modified Hh ligand.  相似文献   

9.
SCUBE1 (signal peptide-CUB-EGF domain-containing protein 1) is a novel, secreted, cell surface glycoprotein expressed during early embryogenesis and found in platelet and endothelial cells. This protein is composed of an N-terminal signal peptide sequence followed by nine tandemly arranged epidermal growth factor (EGF)-like repeats, a spacer region, three cysteine-rich repeat motifs, and one CUB domain at the C terminus. However, little is known about its domain and biological function. Here, we generated a comprehensive panel of domain deletion constructs and a new genetic mouse model with targeted disruption of Scube1 (Scube1(Delta cub/Delta cub)) to investigate the domain function and biological significance. A number of cell-based assays were utilized to define the critical role of the spacer region for membrane association and establish that the EGF-like repeats 7-9 are sufficient for the formation of SCUBE1-mediated homophilic adhesions in a calcium-dependent fashion. Biochemical and molecular analyses showed that the C-terminal cysteine-rich motifs and CUB domain could directly bind and antagonize the bone morphogenetic protein activity. Furthermore, genetic ablation of this C-terminal region resulted in brain malformation in the Scube1(Delta cub/Delta cub) embryos. Together, our results support the dual roles of SCUBE1 on brain morphogenesis and cell-cell adhesions through its distinct domain function.  相似文献   

10.
The Hedgehog (HH) signaling pathway is a central regulator of embryonic development, controlling the pattern and proliferation of a wide variety of organs. Previous studies have implicated the secreted protein, Scube2, in HH signal transduction in the zebrafish embryo (Hollway et al., 2006; Kawakami et al., 2005; Woods and Talbot, 2005) although the nature of the molecular function of Scube2 in this process has remained undefined. This analysis has been compounded by the fact that removal of Scube2 activity in the zebrafish embryo leads to only subtle defects in HH signal transduction in vivo (Barresi et al., 2000; Hollway et al., 2006; Ochi and Westerfield, 2007; van Eeden et al., 1996; Wolff et al., 2003). Here we present the discovery of two additional scube genes in zebrafish, scube1 and scube3, and demonstrate their roles in facilitating HH signal transduction. Knocking down the function of all three scube genes simultaneously phenocopies a complete loss of HH signal transduction in the embryo, revealing that Scube signaling is essential for HH signal transduction in vivo. We further define the molecular role of scube2 in HH signaling.  相似文献   

11.
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.  相似文献   

12.
13.
14.
15.
Cytoplasmic dynein is a large multisubunit microtubule-based motor protein, which mediates movement of numerous intracellular organelles. We report here the identification of the human homologue of cytoplasmic dynein intermediate chain 1 gene (DNCI1) located on human chromosome 7q21.3-q22.1. The mouse orthologue (Dnci1) was identified along with another highly related gene, Dnci2, and their RNA in situ expression patterns were examined during mouse embryogenesis. Dnci1 was found to have a highly restricted expression domain in the developing forebrain as well as the peripheral nervous system (PNS), while Dnci2 displayed a broad expression profile throughout the entire central nervous system and most of the PNS. A dynamic expression profile was also found for Dnci2 in the developing mouse limb bud. The data presented here provide a framework for the further analysis of the functional role of Dnci1 and Dnci2 in mouse and DNCI1 in human.  相似文献   

16.
A transgenic mouse expressing human CYP4B1 in the liver   总被引:5,自引:0,他引:5  
The human CYP4B1 protein was expressed in the liver of a transgenic mouse line under the control of the promoter of the human apolipoprotein E (apo E) gene. Hepatic microsomes of transgenic mice catalyzed omega-hydroxylation of lauric acid and also activated 2-aminofluorene (2-AF), which is a typical substrate for CYP4B1, to mutagenic compounds detected by an umu gene expression assay. These activities observed in transgenic mouse were efficiently inhibited by CYP4B1 antibody. However, such inhibition was not observed in control mice. This is the first report to indicate catalytic activities of human CYP4B1. For further characterization of human CYP4B1, a fusion protein of CYP4B1 and NADPH-P450 reductase was expressed in yeast cells. It was able to activate 2-AF and was also able to catalyze omega-hydroxylation of lauric acid. This transgenic mouse line and the recombinant fusion protein provide a useful tool to study human CYP4B1 and its relation to chemical toxicity and carcinogenesis.  相似文献   

17.
Fierce (frc) mice are deleted for nuclear receptor 2e1 (Nr2e1), and exhibit cerebral hypoplasia, blindness, and extreme aggression. To characterize the Nr2e1 locus, which may also contain the mouse kidney disease (kd) allele, we compared sequence from human, mouse, and the puffer fish Fugu rubripes. We identified a novel gene, c222389, containing conserved elements in noncoding regions. We also discovered a novel vertebrate gene conserved across its length in prokaryotes and invertebrates. Based on a dramatic upregulation in lactating breast, we named this gene lactation elevated-1 (LACE1). Two separate 100-bp elements within the first NR2E1 intron were virtually identical between the three species, despite an estimated 450 million years of divergent evolution. These elements represent strong candidates for functional NR2E1 regulatory elements in vertebrates. A high degree of conservation across NR2E1 combined with a lack of interspersed repeats suggests that an array of regulatory elements embedded within the gene is required for proper gene expression.  相似文献   

18.
19.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

20.
Human CS1, also known as novel Ly9, 19A24, or CRACC, is a member of the immunoglobulin gene superfamily (IgSF) expressed on natural killer cells and other leukocytes. Here we describe the cloning of the mouse homologue of this gene. The mouse novel Ly9 gene is shown to encode a transmembrane protein composed of two extracellular immunoglobulin-like domains, a transmembrane region and an 88-amino acid cytoplasmic domain. Mouse novel Ly9 is structurally similar to the extracellular domains of CD84 and CD229 (Ly9). Both mouse and human novel Ly9 genes mapped close to the CD229gene in a region where other members of the CD150 family have also been mapped, and analysis of their genomic sequences showed that they have an identical intron/exon organization. Northern blot analysis revealed that the expression of mouse and human novel Ly9 was predominantly restricted to hematopoietic tissues, with the exception of testis. Here we show that SAP (SH2D1A), an adapter protein responsible for the X-linked lymphoproliferative disease, binds to the phosphorylated cytoplasmic tail of human but not mouse novel Ly9. Taken together, these data indicate that mouse novel Ly9 is a new member of the expanding CD150 family of cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号