首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([ 3H]8-OH-DPAT) to 5-hydroxytryptamine (5-HT)-related sites was investigated in several regions of the rat brain. Marked differences were observed in the characteristics of binding to membranes from hippocampus, striatum, and cerebral cortex. Hippocampal sites exhibited the highest affinity (KD approximately 2 nM) followed by the cerebral cortex (KD approximately 6 nM) and the striatum (KD approximately 10 nM). Ascorbic acid inhibited specific [3H]8-OH-DPAT binding in all three regions but millimolar concentrations of Ca2+, Mg2+, and Mn2+ enhanced specific binding to hippocampal membranes, whereas only Mn2+ increased it in the cerebral cortex and all three cations inhibited specific binding to striatal membranes. Guanine nucleotides (0.1 mM GDP, GTP) inhibited binding to hippocampal and cortical membranes only. As intracerebral 5,7-dihydroxytryptamine markedly decreased [3H]8-OH-DPAT binding sites in the striatum, but not in the hippocampus, the striatal sites appear to be on serotoninergic afferent fibers. In contrast, in the hippocampus the sites appear to be on postsynaptic 5-HT target cells, as local injection of kainic acid decreased their density. Both types of sites appear to be present in the cerebral cortex. The postsynaptic hippocampal [3H]8-OH-DPAT binding sites are probably identical to the 5-HT1A subsites, but the relationship between the presynaptic binding sites and the presynaptic autoreceptors controlling 5-HT release deserves further investigation.  相似文献   

2.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

3.
Photoaffinity labeling of dopamine D1 receptors   总被引:5,自引:0,他引:5  
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states.  相似文献   

4.
W Li  R G MacDonald  T D Hexum 《Life sciences》1992,50(10):695-703
[125I]NPY bound to a single class of saturable binding sites on bovine hippocampus membranes with a KD of 0.1 mM and Bmax of 165 fmol/mg of protein. The rank order of potency of NPY fragments and other structurally related peptides to inhibit [125I]NPY binding was: PYY greater than or equal to NPY much greater than BPP greater than or equal to APP and NPY greater than NPY-(13-36) greater than NPY-(18-36) greater than or equal to NPY-(20-36) much greater than NPY-(26-36) greater than NPY-(free acid). The identity of the NPY binding site was investigated by affinity labeling. Gel electrophoresis followed by autoradiography revealed a band with a mol mass of 50 kDa. Unlabeled NPY or PYY, but not BPP, HPP and APP, inhibited labeling of [125I]NPY to the 50 kDa protein band. Moreover, labeling was inhibited by NPY greater than NPY-(18-36) greater than or equal to NPY-(13-36) greater than or equal to NPY-(20-36) greater than NPY-(26-36) greater than NPY-(free acid). The binding of [125I]NPY and the intensity of the cross-linked band were reduced in parallel by increasing concentrations of unlabeled NPY (IC50 = 0.7 nM and 0.6 mM, respectively). These studies demonstrate that bovine hippocampal membranes contain a 50 kDa [125I]NPY binding site that has the ligand specificity characteristic of the Y2 receptor subtype.  相似文献   

5.
Apparent affinities (Ki) of (E)- and (Z)-N-(iodoallyl)spiperone [E)- and (Z)-NIASP) for dopamine D2 and serotonin 5-HT2 receptors were determined in competition binding assays. (Z)-NIASP (Ki 0.35 nM, D2; Ki 1.75 nM, 5-HT2) proved slightly more potent and selective for D2 sites in vitro than (E)-NIASP (Ki 0.72 nM, D2; Ki 1.14 nM, 5-HT2). In vivo, radioiodinated (E)- and (Z)-[125I]-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D2 receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective, dose-dependent blockade of (E)-[125I]-NIASP uptake was found for drugs binding to dopamine D2 sites, while drugs selective for serotonin 5-HT2, alpha 1-adrenergic and dopamine D1 receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-[125I]-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-[125I]-NIASP binds with high selectivity and specificity to dopamine D2 sites in vivo.  相似文献   

6.
Parkinson's disease (PD) is a prevalent age-related motor dysfunction resulting from the hyperactivity of the indirect striatal pathway, which is controlled in an antagonistic manner by inhibitory dopamine D2 and facilitatory adenosine A(2A) receptors. Thus, dopamine precursors like l-DOPA are the standard therapy and A(2A) antagonists are now tested as anti-parkinsonians. Increased free radicals levels occur on aging and are proposed to be a contributing factor for PD. We now tested if free radicals affected A(2A) and D2 receptors in striatal membranes of young adult (2 months) and old (24 months) rats. The A(2A) receptor antagonist [3H]SCH 58261 bound to striatal membranes with a KD of 0.9 nM and a Bmax of 953 fmol/mg protein in young rats and with a KD of 0.8 nM and a Bmax of 725 fmol/mg protein in aged rats (24% decrease). The D2 receptor antagonist [3H]raclopride bound to striatal membranes with a KD of 4.0 nM and a Bmax of 598 fmol/mg protein in young rats and with a KD of 4.3 nM and a Bmax of 368 fmol/mg protein in aged rats (38% decrease). Exposure of striatal membranes to a free radical generation system (2 mM FeSO4 and 4 mM ascorbate) caused a similar decrease of [3H]SCH 58261 (35%) and [3H]raclopride (37%) binding in young adult rats but caused a greater decrease of [3H]SCH 58261 (49%) than of [3H]raclopride (20%) binding in aged rats. Thus, in aged rats, there is an unbalance of A(2A)/D2 receptor density favouring A(2A) receptors, which is restored on exposure to free radicals. This supports the hypothesis that the effectiveness of A(2A) receptor antagonists as anti-parkinsonians, demonstrated in young adult animals, may not be affected by a modified A(2A)/D2 receptor density in aged individuals suffering from exposure to increased free radical levels, as occurs in PD.  相似文献   

7.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

8.
Radioiodinated D-(+)-N1-ethyl-2-iodolysergic acid diethylamide ([125I]-EIL) has been evaluated as a ligand for in vitro and in vivo studies of cerebral serotonin 5-HT2 receptors. [125I]-EIL exhibited high affinity (KD = 209 pM) for 5-HT2 receptors with a high degree of specific binding (80-95%) in membranes from rat prefrontal cortex. The regional distribution of [125I]-EIL binding in vivo to seven areas of mouse brain correlated significantly (Rs = 0.93) with known densities of 5-HT2 receptors. In vivo specificity, defined by tissue to cerebellum radioactivity ratios, reached a maximum for frontal cortex at 6 hr (21.2) and persisted through 16 hr (8.8). Ketanserin, a 5-HT2 receptor antagonist, fully inhibited binding in a dose dependent fashion in all brain regions except cerebellum. By contrast, blockers for dopamine D2, alpha- or beta-adrenergic receptors did not significantly inhibit radioligand binding in any region. [125I]-EIL selectively labels 5-HT2 receptors in vivo with the highest specificity of any serotonergic ligand reported to date, indicating that [123I]-EIL should prove applicable to single photon emission computed tomography studies in living brain.  相似文献   

9.
The ligand binding subunit of the D2 subtype of the dopamine receptor has been identified by photoaffinity labeling. In order to develop a specific covalent receptor probe, an analogue of the potent D2 selective antagonist spiperone, N-(p-aminophenethyl)spiperone (NAPS) has been synthesized. The aminophenethyl substituent of NAPS can be radioiodinated to theoretical specific radioactivity (2,175 Ci/mmol) and then the arylamine group converted to an arylazide to yield a photosensitive probe [( 125I]N3-NAPS). In rat striatal membranes, the nonradiolabeled azide probe (N3-NAPS) binds to the receptor with high affinity (KD congruent to 1.6 +/- 0.05 nM) and upon photoactivation irreversibly decreases the number of available receptors in these membranes as measured by [3H]spiperone binding. More importantly, however, incubation of rat striatal membranes with [125I]N3-NAPS leads to the photodependent covalent incorporation of the probe into a peptide of Mr = 94,000 as assessed by autoradiography of gels after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling of this Mr = 94,000 peptide can be blocked specifically and stereoselectively by dopaminergic antagonists such as (+)- and (-)-butaclamol but not by non-dopaminergic antagonists. Moreover, dopaminergic agonists also attenuate the covalent labeling of this peptide with an order of potency which is typically D2-dopaminergic. Therefore, the specificity of [125I]N3-NAPS labeling of the Mr = 94,000 peptide suggests that this peptide represents the ligand binding subunit of the D2-dopamine receptor.  相似文献   

10.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

11.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

12.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

13.
A high density (in the pmol/mg protein range) of specific functional receptors for PACAP (pituitary adenylate cyclase activating polypeptide) was observed in membranes from rat brain cortex, olfactory bulb, hypothalamus, hippocampus, striatum, cerebellum, pons and cervico-dorsal spinal cord, using [125I]PACAP-27 (PACAP 1-27). The tracer bound rapidly, specifically and reversibly. Competition binding curves were compatible with the coexistence, in the eight central nervous areas explored, of high and low affinity binding sites for PACAP-27 (Kd of 0.2 nM and 3.0 nM, respectively), and of only one class of binding sites for PACAP-38 (PACAP (1-38), Kd 0.2-0.9 nM). VIP inhibited only partially the binding of [125I]PACAP-27, and PHI, GRF(1-29)NH2 and secretin were ineffective at 1 microM. Chemical [125I]PACAP-27 cross-linking revealed a single specific 64 kDa protein species. In rat brain cortical membranes, saturation and competition experiments, using [125I]PACAP-38 as radioligand, indicated the presence of both high (Kd 0.13 nM) and low (Kd 8-10 nM) affinity binding sites for PACAP-38 and of low affinity (Kd 30 nM) binding sites for PACAP-27. These data taken collectively suggest the coexistence of PACAP-A receptors with a slight preference for PACAP-27 over PACAP-38 and of PACAP-B receptors that recognize PACAP-38 with a high affinity and PACAP-27 with low affinity. Both PACAP-27 and PACAP-38 stimulated adenylate cyclase with similar potency and efficacy. VIP was markedly less potent in this respect and also less efficient, except on cerebellar membranes.  相似文献   

14.
《Life sciences》1996,58(12):PL231-PL239
We have synthesized several derivatives of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding of these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET ⪢ 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of obromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2 = 0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes.  相似文献   

15.
The present experiments show that N-[3H]-methylcarbamylcholine ([3H]MCC) binds specifically and with high affinity to rat hippocampus, frontal cortex, and striatum. The highest maximal density of binding sites was apparent in frontal cortex and the lowest in hippocampus. [3H]MCC binding was potently inhibited by nicotinic, but not muscarinic, agonists and by the nicotinic antagonist dihydro-beta-erythroidine in all three brain regions studied. The effect of unlabeled MCC on acetylcholine (ACh) release from slices of rat brain was tested. The drug significantly enhanced spontaneous ACh release from slices of hippocampus and frontal cortex, but not from striatal slices. This effect of MCC to increase ACh release from rat hippocampus and frontal cortex was antagonized by the nicotinic antagonists dihydro-beta-erythroidine and d-tubocurarine, but not by alpha-bungarotoxin or by the muscarinic antagonist atropine. The MCC-induced increase in spontaneous ACh release from hippocampal and frontal cortical slices was not affected by tetrodotoxin. The results suggest that MCC might alter cholinergic transmission in rat brain by a direct activation of presynaptic nicotinic receptors on the cholinergic terminals. That this alteration of ACh release is apparent in hippocampus and frontal cortex, but not in striatum, suggests that there may be a regional specificity in the regulation of ACh by nicotinic receptors in rat brain.  相似文献   

16.
A novel radioiodinated ligand of the butyrophenone type has been synthesized for the quantification and characterization of dopamine D2 receptors. This haloperidol-derived ligand, haloperidol-succinylglycyl[125I]iodotyrosine ([125I]HSGTI), binds rapidly (equilibrium is reached within 30 min, at 10 pM and 37 degrees C) and with high affinity (Kd = 0.3 nM) to bovine striatal membranes. Its pharmacology, determined by competitive displacement with dopaminergic and non-dopaminergic drugs, is characteristic of binding to dopamine D2 receptors.  相似文献   

17.
Although the aging effect of dopamine D2 receptor in the striatum is well-documented, the effect of age on the extrastriatal dopamine D2 receptor has not been fully examined. Since the density of extrastriatal dopamine D2 receptor is very low, suitable ligands are limited. In this study, we used [11C]FLB 457 to quantify the extrastriatal dopamine D2 receptor in the living human brain. Twenty-seven healthy male subjects aged from 21 to 82 years participated in the positron emission tomography study. Extrastriatal [11C]FLB 457 binding was quantified with a reference tissue model using cerebellum as a reference region. Binding potentials corresponding to Bmax/Kd were used to evaluate age-related change. We found age-related decreases of D2 receptor binding in all measured extrastriatal regions. The decrease of D2 receptor binding was 13.8% per decade in frontal cortex, 12.0% in temporal cortex, 13.4% in parietal cortex, 12.4% in occipital cortex, 12.2% in hippocampus, and 4.8% in thalamus. These findings suggest that the amounts of D2 receptor declines in all brain regions as part of the normal aging process.  相似文献   

18.
The new substituted benzamide Spectramide, (N-[2-[4-iodobenzyl-N-methylamino]-2-methoxy-4-ethyl]-5-chloro- methylamine] benzamide) labelled with 125I was used as a potent and highly selective dopamine-D2 receptor antagonist in rat striatal homogenates for in vitro receptor binding. Kinetic experiments demonstrated the reversibility of the binding and the estimated Kd from saturation analysis was 25 pM, with a Bmax of 20 pmol/g of tissue. Competition studies showed that spectramide did not interact potently with the D1 or dopamine-uptake site. Drugs known to interact with other receptor systems were weak competitors of the binding, while binding was potently inhibited by other D2 antagonists, such as spiperone and eticlopride. These data indicate that Spectramide binds selectively and with high affinity to the dopamine D2 receptors, and may prove to be a useful tool for the study of these receptors in vivo using PET or SPECT.  相似文献   

19.
125I-Spiperone binds with high affinity (KD 0.3 nM) to a single specific site (Bmax 34 pmol/g wet weight) in homogenates of rat corpus striatum. Specific binding is about 40-60 percent of total binding and is displaced stereo-specifically by butaclamol and clopenthixol. Neuroleptic drugs of various classes are potent inhibitors of 125I-spiperone binding (Ki's 1-10 nM). Selective dopamine antagonists such as sulpiride (Ki 50 nM) and dopamine agonists such as apomorphine (Ki 200 nM) are also potent inhibitors. The drug specificity of 125I-spiperone binding correlates well with that of 3H-spiperone binding, providing good evidence that 125I-spiperone labels D2 dopamine receptors in striatal membranes. 125I-Spiperone, with its high specific activity (2200 Ci/mmol) may prove to be a useful ligand in studies examining D2 dopamine receptors in soluble preparations and by autoradiography. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.  相似文献   

20.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号