首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids.  相似文献   

2.
Alloproteins, proteins that contain unnatural amino acids, have immense potential in biotechnology and medicine. Although various approaches for alloprotein production exist, there is no satisfactory method to produce large quantities of alloproteins containing unnatural amino acids in specific positions. The tyrosine analogue azatyrosine, l-beta-(5-hydroxy-2-pyridyl)-alanine, can convert the ras-transformed phenotype to normal phenotype, presumably by its incorporation into cellular proteins. This provided the stimulus for isolation of a mutant tyrosyl-tRNA synthetase (TyrRS) capable of charging azatyrosine to tRNA. A plasmid library of randomly mutated Escherichia coli tyrS (encoding TyrRS) was made by polymerase chain reaction techniques. The desired TyrRS mutants were selected by screening for in vivo azatyrosine incorporation of E. coli cells transformed with the mutant tyrS plasmids. One of the clones thus isolated, R-6-A-7, showed a 17-fold higher in vivo activity for azatyrosine incorporation than wild-type TyrRS. The mutant tyrS gene contained a single point mutation resulting in replacement of phenylalanine by serine at position 130 in the protein. Structural modeling revealed that position 130 is located close to Asp(182), which directly interacts with tyrosyladenylate. Kinetic analysis of aminoacyl-tRNA formation by the wild-type and mutated F130S TyrRS enzymes showed that the specificity for azatyrosine, measured by the ratios of k(cat)/K(m) for tyrosine and the analogue, increased from 17 to 36 as a result of the F130S mutation. Thus, the high discrimination against azatyrosine is significantly reduced in the mutant enzyme. These results suggest that utilization of F130S TyrRS for in vivo protein biosynthesis may lead to efficient production of azatyrosine-containing alloproteins.  相似文献   

3.
A suppressor tRNA(Tyr) and mutant tyrosyl-tRNA synthetase (TyrRS) pair was developed to incorporate 3-iodo-L-tyrosine into proteins in mammalian cells. First, the Escherichia coli suppressor tRNA(Tyr) gene was mutated, at three positions in the D arm, to generate the internal promoter for expression. However, this tRNA, together with the cognate TyrRS, failed to exhibit suppressor activity in mammalian cells. Then, we found that amber suppression can occur with the heterologous pair of E.coli TyrRS and Bacillus stearothermophilus suppressor tRNA(Tyr), which naturally contains the promoter sequence. Furthermore, the efficiency of this suppression was significantly improved when the suppressor tRNA was expressed from a gene cluster, in which the tRNA gene was tandemly repeated nine times in the same direction. For incorporation of 3-iodo-L-tyrosine, its specific E.coli TyrRS variant, TyrRS(V37C195), which we recently created, was expressed in mammalian cells, together with the B.stearothermophilus suppressor tRNA(Tyr), while 3-iodo-L-tyrosine was supplied in the growth medium. 3-Iodo-L-tyrosine was thus incorporated into the proteins at amber positions, with an occupancy of >95%. Finally, we demonstrated conditional 3-iodo-L-tyrosine incorporation, regulated by inducible expression of the TyrRS(V37C195) gene from a tetracycline-regulated promoter.  相似文献   

4.
C Füll 《FEBS letters》2001,509(3):361-364
The catalytic cavity of the Alicyclobacillus acidocaldarius squalene-hopene cyclase is predominantly lined by aromatic amino acids. In mutant cyclases, the four tyrosine residues in the catalytic cavity were replaced by different amino acids. The mutants showed significant differences in catalytic behavior compared to the wild-type and to each other. Mutants Y609L, Y609C and Y609S produced the bicyclic main product gamma-polypodatetraene, while Y495L and Y612L showed a wild-type product pattern and produced hopene as the main product. Altered product patterns were also found with Y420 mutations.  相似文献   

5.
To define a region(s) in human immunodeficiency virus type 1 (HIV-1) Vif that involves binding to its target APOBEC3G (A3G), we have generated a series of site-specific proviral vif mutants. Of 30 mutants examined, 15 did not grow at all or grew more poorly than wild-type virus in non-permissive cells. Eight clones with N-terminal mutations located outside of the HCCH motif and BC-box, which are known to be directly crucial for the degradation of A3G, were chosen from these growth-defective mutants and mainly analyzed in detail for functional activity of their mutant Vif proteins. By single-cycle replication and immunoprecipitation/immunoblotting analyses, mutants designated W21A, S32A, W38A, Y40A, and H43A were demonstrated to hardly or poorly bind to and neutralize A3G. Upon transfection, these mutants produced progeny virions containing much more A3G than wild-type clone. Interestingly, while mutants designated E76A and W79A acted normally to inactivate A3G, they were found to exhibit a Vif-defective phenotype against A3F. Another unique mutant designated Y69A incompetent against both of A3G/F was also identified. Our results here have indicated that at least two distinct regions in the N-terminal half of HIV-1 Vif are critical for binding and exclusion of A3G/F.  相似文献   

6.
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.  相似文献   

7.
The guanine nucleotide-binding protein G(o alpha) has been implicated in the regulation of Ca2+ channels in neural tissues. Covalent modification of G(o alpha) by pertussis toxin-catalyzed ADP-ribosylation of a cysteine (position 351) four amino acids from the carboxyl terminus decouples G(o alpha) from receptor. To define the structural requirements for ADP-ribosylation, preparations of recombinant G(o alpha) with mutations within the five amino acids at the carboxyl terminus were evaluated for their ability to serve as pertussis toxin substrates. As expected, the mutant in which cysteine 351 was replaced by glycine (C351G) was not a toxin substrate. Other inactive mutants were G352D and L353 delta/Y354 delta. Mutations that had no significant effect on toxin-catalyzed ADP-ribosylation included G350D, G350R, Y354 delta, and L353V/Y354 delta. Less active mutants were L353G/Y354 delta, L353A/Y354 delta, and L353G. ADP-ribosylation of the active mutants, like that of wild-type G(o alpha), was enhanced by the beta gamma subunits of bovine transducin. It appears that three of the four terminal amino acids critically influence pertussis toxin-catalyzed ADP-ribosylation of G(o alpha).  相似文献   

8.
Watson JN  Dookhun V  Borgford TJ  Bennet AJ 《Biochemistry》2003,42(43):12682-12690
Mutagenesis of the conserved tyrosine (Y370) of the Micromonospora viridifaciens sialidase changes the mechanism of catalysis from retention of anomeric configuration to an unprecedented inverting mechanism in which water efficiently functions as the nucleophile. Three mutants, Y370A, Y370D, and Y370G, were produced recombinantly in Escherichia coli, and all are catalytically active against the activated substrate 4-methylumbelliferyl alpha-D-N-acetylneuraminide. The Y370D mutant was also shown to catalyze the hydrolysis of natural substrate analogues such as 3'-sialyllactose. A comparison of the pH-rate profiles for the wild-type and the Y370D mutant sialidase reveals no major differences, although with respect to the kinetic term k(cat)/K(m), an ionized form of the aspartate-370 enzyme is catalytically compromised. For the wild-type enzyme, the value of the Br?nsted parameter beta(lg) on k(cat) is 0.02 +/- 0.03, while for the Y370D mutant sialidase beta(lg) = -0.55 +/- 0.03 for the substrates with bad leaving groups. Thus, for the wild-type enzyme, a nonchemical step(s) is rate-limiting, but for the tyrosine mutant cleavage of the glycosidic C-O bond is rate-determining. The Br?nsted slopes derived for the kinetic parameter k(cat)/K(m) display a similar trend (beta(lg) -0.30 +/- 0.04 and -0.74 +/- 0.04 for the wild-type and Y370D, respectively). These results reveal that the tyrosine residue lowers the activation free energy for cleavage of 6'-sialyllactose, a natural substrate analogue, by more than 24.9 kJ mol(-1). Evidence is presented that the mutant sialidases operate by a dissociative mechanism, and the wild-type enzyme operates by a concerted mechanism.  相似文献   

9.
Oculodentodigital dysplasia (ODDD) is a congenital autosomal dominant disorder with phenotypic variability, which has been associated with mutations in the GJA1 gene encoding connexin43 (Cx43). Given that Cx43 mutants are thought to be equally co-expressed with wild-type Cx43 in ODDD patients, it is imperative to examine the consequence of these mutants in model systems that reflect this molar ratio. To that end, we used differential fluorescent protein tagging of mutant and wild-type Cx43 to quantitatively monitor the ratio of mutant/wild-type within the same putative gap junction plaques and co-immunoprecipitation to determine if the mutants interact with wild-type Cx43. Together the fluorescence-based assay was combined with patch clamp analysis to assess the dominant negative potency of Cx43 mutants. Our results revealed that the ODDD-linked Cx43 mutants, G21R and G138R, as well as amino terminus green fluorescent protein-tagged Cx43, were able to co-localize with wild-type Cx43 at the gap junction plaque-like structures and to co-immunoprecipitate with wild-type Cx43. All Cx43 mutants demonstrated dominant negative action on gap junctional conductance of wild-type Cx43 but not that of Cx32. More interestingly, these Cx43 mutants demonstrated different potencies in inhibiting the function of wild-type Cx43 with the G21R mutant being two times more potent than the G138R mutant. The potency difference in the dominant negative properties of ODDD-linked Cx43 mutants may have clinical implications for the various symptoms and disease severity observed in ODDD patients.  相似文献   

10.
Broad specificity amino acid racemase (E.C. 5.1.1.10) from Pseudomonas putida IFO 12996 (BAR) is a unique racemase because of its broad substrate specificity. BAR has been considered as a possible catalyst which directly converts inexpensive l-amino acids to dl-amino acid racemates. The gene encoding BAR was cloned to utilize BAR for the synthesis of d-amino acids, especially d-Trp which is an important intermediate of pharmaceuticals. The substrate specificity of cloned BAR covered all of the standard amino acids; however, the activity toward Trp was low. Then, we performed random mutagenesis on bar to obtain mutant BAR derivatives with high activity for Trp. Five positive mutants were isolated after the two-step screening of the randomly mutated BAR. After the determination of the amino acid substitutions in these mutants, it was suggested that the substitutions at Y396 and I384 increased the Trp specific racemization activity and the racemization activity for overall amino acids, respectively. Among the positive mutants, I384M mutant BAR showed the highest activity for Trp. l-Trp (20 mM) was successfully racemized, and the proportion of d-Trp was reached 43% using I384M mutant BAR, while wild-type BAR racemized only 6% of initial l-Trp.  相似文献   

11.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

12.
Human tyrosyl-tRNA synthetase from mitochondria (mt-TyrRS) presents dual sequence features characteristic of eubacterial and archaeal TyrRSs, especially in the region containing amino acids recognizing the N1-N72 tyrosine identity pair. This would imply that human mt-TyrRS has lost the capacity to discriminate between the G1-C72 pair typical of eubacterial and mitochondrial tRNATyr and the reverse pair C1-G72 present in archaeal and eukaryal tRNATyr. This expectation was verified by a functional analysis of wild-type or mutated tRNATyr molecules, showing that mt-TyrRS aminoacylates with similar catalytic efficiency its cognate tRNATyr with G1-C72 and its mutated version with C1-G72. This provides the first example of a TyrRS lacking specificity toward N1-N72 and thus of a TyrRS disobeying the identity rules. Sequence comparisons of mt-TyrRSs across phylogeny suggest that the functional behavior of the human mt-TyrRS is conserved among all vertebrate mt-TyrRSs.  相似文献   

13.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the π-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the π-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

14.
In this work, the site saturation mutagenesis of tyrosine 195, tyrosine 260 and glutamine 265 in the cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase for maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Specifically, the site-saturation mutagenesis of three sites—tyrosine 195, tyrosine 260, and glutamine 265—was performed, and it was found that the resulting mutants (containing the mutations Y195S [tyrosine → serine], Y260R [tyrosine → arginine], and Q265K [glutamine → lysine]) produced higher AA-2G yields than the wild type and the other mutant CGTases when maltodextrin was used as the glycosyl donor. Furthermore, double and triple mutations were introduced, and four mutants (containing Y195S/Y260R, Y195S/Q265K, Y260R/Q265K, and Y260R/Q265K/Y195S) were obtained and evaluated for the capacity to produce AA-2G. The Y260R/Q265K/Y195S triple mutant produced the highest titer of AA-2G at 1.92 g/liter, which was 60% higher than that (1.20 g/liter) produced by the wild-type CGTase. The kinetics analysis of AA-2G synthesis by the mutant CGTases confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, all seven mutants had lower cyclization activities and higher hydrolysis and disproportionation activities. Finally, the mechanism responsible for the enhanced substrate specificity was explored by structure modeling, which indicated that the enhancement of maltodextrin specificity may be related to the changes of hydrogen bonding interactions between the side chain of residue at the three positions (195, 260, and 265) and the substrate sugars. This work adds to our understanding of the synthesis of AA-2G and makes the Y260R/Q265K/Y195S mutant a good starting point for further development by protein engineering.  相似文献   

15.
Mutagenesis of the conserved tyrosine (Y370) of the Micromonospora viridifaciens sialidase to small amino acids changes the mechanism of catalysis from retention of anomeric configuration to inversion [Watson, J. N., et al. (2003) Biochemistry 42, 12682-12690]. For the Y370G mutant enzyme-catalyzed hydrolysis of a series of aryl sialosides and 3'-sialyllactose, the derived Br?nsted parameters (beta(lg)) on k(cat) and k(cat)/K(m) are -0.63 +/- 0.05 and -0.80 +/- 0.08, respectively. Thus, for the Y370G enzyme, glycosidic C-O bond cleavage is rate-determining. Analysis of the activity of the Y370G mutant and wild-type enzymes against a substrate [3,4-dihydro-2H-pyrano[3,2-c]pyridinium alpha-d-N-acetylneuraminide (DHP-alphaNeu5Ac)] whose hydrolysis cannot be accelerated by acid catalysis is consistent with these reactions proceeding via S(N)1 and S(N)2 mechanisms, respectively. The overall structure of the Y370G mutant sialidase active site is very similar to the previously reported wild-type structure [Gaskell, A., et al. (1995) Structure 3, 1197-1205], although removal of the tyrosine residue creates two significant changes to the active site. First, the anomeric oxygen atom of the hydrolysis product (beta-N-acetylneuraminic acid) and four water molecules bind in the large cavity created by the Y370G mutation. Second, the side chain of Asn310 moves to make a strong hydrogen bond to one of the bound water molecules.  相似文献   

16.
The wild-type and two mitogenic-defective mutants of the type beta receptor for platelet-derived growth factor (PDGF) were expressed in Chinese hamster ovary cells. In the first mutant, delta Ki, 82 of 104 amino acids in the kinase insert region were deleted. This mutant was recently reported to be defective in mediating DNA synthesis. In the second mutant, Y825F, tyrosine 825 was converted to phenylalanine by a point mutation. We report here that this mutant is also defective in mediating PDGF-stimulated DNA synthesis. Both mutants were capable of eliciting many of the early responses to PDGF, including receptor autophosphorylation. However, neither mutant was capable of undergoing PDGF-stimulated change in receptor conformation or of phosphorylating exogenous substrate in an in vitro assay. These data suggest that changes in receptor conformation and efficient utilization of specific tyrosine kinase substrates are important for the stimulation of cell proliferation of PDGF and that phosphorylation of tyrosine 825 may be involved in signal transduction.  相似文献   

17.
A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14–20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to ~60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed ~2.8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.  相似文献   

18.
Y6 and Y115 are key amino acids involved in enzyme-substrate interactions in mu-class glutathione S-transferase (GST). They provide electrophilic assistance and stabilize substrates through their hydroxyl groups. Two site-directed mutants (Y7F and Y116F) and the wild-type shrimp GSTs were expressed in Escherichia coli, and the steady-state kinetic parameters were determined using CDNB as the second substrate. The mutants were modeled based on a crystal structure of a mu-class GST to obtain further insights about the changes at the active site. The Y116F mutant had an increase in kcat contrary to Y7F compared to the wild type. Molecular modeling showed that the shrimp GST has a H108 residue that may contribute to compensate and lead to a less deleterious change when conserved tyrosine residues are mutated. This work indicates that shrimp GST is a useful model to understand the catalysis mechanisms in this critical enzyme.  相似文献   

19.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

20.
C3G is a guanine nucleotide exchange factor for Rap1 and is activated by the expression of Crk adaptor proteins. We found that expression of CrkI in COS cells induced significant tyrosine phosphorylation of C3G. To understand the mechanism by which C3G is phosphorylated and activated by Crk, we constructed a series of deletion mutants. Deletion of the amino terminus of C3G to amino acid 61 did not remarkably affect either tyrosine phosphorylation or Crk-dependent activation of C3G. When C3G was truncated to amino acid 390, C3G was still phosphorylated on tyrosine but was not effectively activated by CrkI. Deletion of the amino terminus of C3G to amino acid 579 significantly reduced the Crk-dependent tyrosine phosphorylation of C3G and increased GTP-bound Rap1 irrespective of the presence of CrkI. We substituted all seven tyrosine residues in this region, amino acids 391-579, for phenylalanine for identification of the phosphorylation site. Among the substitution mutants, the C3G-Y504F mutant, in which tyrosine 504 was substituted by phenylalanine, was remarkably less activated and phosphorylated than the wild type. All the other substitution mutants were activated and tyrosyl-phosphorylated by the expression of CrkI. Thus, CrkI activates C3G by the phosphorylation of tyrosine 504, which represses the cis-acting negative regulatory domain outside the catalytic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号