首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The taxonomic relationship between heterotrophic and parasitic dinoflagellates has not been studied extensively at the molecular level. In order to investigate these taxonomic relationships, we sequenced the small subunit (SSU) ribosomal RNA gene of Pfiesteria piscicida (Steidinger et Burkholder), a Pfiesteria -like dinoflagellate, Cryptoperidiniopsoid sp., and Amyloodinium ocellatum (Brown) and submitted those sequences to GenBank. Pfiesteria piscicida and Cryptoperidiniopsoid sp. are heterotrophic dinoflagellates, purportedly pathogenic to fish, and A. ocellatum, a major fish pathogen, has caused extensive economic losses in both the aquarium and aquaculture industries. The pathogenicity of the Pfiesteria -like dinoflagellate is unknown at this time, but its growth characteristics and in vitro food preferences are similar to those of P. piscicda. The SSU sequences of these species were aligned with the other full-length dinoflagellate sequences, as well as those of representative apicomplexans and Perkinsus species, the groups most closely related to dinoflagellates. Phylogenetic analyses indicate that Cryptoperidiniopsoid sp., P. piscicida, and the Pfiesteria -like dinoflagellate are closely related and group into the class Blastodiniphyceae, as does A. ocellatum. None of the species examined were closely related to the apicomplexans or to Perkinsus marinus, the parasite that causes "Dermo disease" in oysters. The overall phylogenetic analyses largely supported the current class and subclass groupings within the dinoflagellates.  相似文献   

2.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

3.
Several dinoflagellate strains of the genus Pfiesteria were isolated by culturing techniques from sediment samples taken in the Oslofjord region of Norway. Pfiesteria piscicida, well known as a fish killer from the Atlantic coast of America, was identified by genetic methods and light microscopy. The related species Pfiesteria shumwayae was attracted from the sediment by the presence of fish, and has proved toxic. This present survey demonstrates the wide distribution of these potentially harmful species, but so far they have not been connected with fish kills in Europe.  相似文献   

4.
Pfiesteria piscicida is a heterotrophic dinoflagellate widely distributed along the middle Atlantic shore of the United States and associated with fish kills in the Neuse River (North Carolina) and the Chesapeake Bay (Maryland and Virginia). We constructed a genomic DNA library from clonally cultured P. piscicida and characterized the nontranscribed spacer (NTS), small subunit, internal transcribed spacer 1 (ITS1), 5.8S region, ITS2, and large subunit of the rRNA gene cluster. Based on the P. piscicida ribosomal DNA sequence, we developed a PCR-based detection assay that targets the NTS. The assay specificity was assessed by testing clonal P. piscicida and Pfiesteria shumwayae, 35 additional dinoflagellate species, and algal prey (Rhodomonas sp.). Only P. piscicida and nine presumptive P. piscicida isolates tested positive. All PCR-positive products yielded identical sequences for P. piscicida, suggesting that the PCR-based assay is species specific. The assay can detect a single P. piscicida zoospore in 1 ml of water, 10 resting cysts in 1 g of sediment, or 10 fg of P. piscicida DNA in 1 micro g of heterologous DNA. An internal standard for the PCR assay was constructed to identify potential false-negative results in testing of environmental sediment and water samples and as a competitor for the development of a quantitative competitive PCR assay format. The specificities of both qualitative and quantitative PCR assay formats were validated with >200 environmental samples, and the assays provide simple, rapid, and accurate methods for the assessment of P. piscicida in water and sediments.  相似文献   

5.
Dinoflagellates (Eukaryota; Alveolata; Dinophyceae) are single-cell eukaryotic microorganisms implicated in many toxic outbreaks in the marine and estuarine environment. Co-existing with dinoflagellate communities are bacterial assemblages that undergo changes in species composition, compete for nutrients and produce bioactive compounds, including toxins. As part of an investigation to understand the role of the bacteria in dinoflagellate physiology and toxigenesis, we have characterized the bacterial community associated with laboratory cultures of four ' Pfiesteria -like' dinoflagellates isolated from 1997 fish killing events in Chesapeake Bay. A polymerase chain reaction with oligonucleotide primers specific to prokaryotic 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria. The results indicate a diverse group of over 30 bacteria species co-existing in the dinoflagellate cultures. The broad phylogenetic types of dinoflagellate-associated bacteria were generally similar, although not identical, to those bacterial types found in association with other harmful algal species. Dinoflagellates were made axenic, and the culturable bacteria were added back to determine the contribution of the bacteria to dinoflagellate growth. Confocal scanning laser fluorescence microscopy with 16S rDNA probes was used to demonstrate a physical association of a subset of the bacteria and the dinoflagellate cells. These data point to a key component in the bacterial community being species in the marine alpha-proteobacteria group, most closely associated with the α-3 or SAR83 cluster.  相似文献   

6.
Accumulating molecular data, particularly complete organellar genome sequences, continue to advance our understanding of the evolution of mitochondrial and chloroplast DNAs. Although the notion of a single primary origin for each organelle has been reinforced, new models have been proposed that tie the acquisition of mitochondria more closely to the origin of the eukaryotic cell per se than is implied by classic endosymbiont theory. The form and content of the ancestral proto-mitochondrial and proto-chloroplast genomes are becoming clearer but unusual patterns of organellar genome structure and organization continue to be discovered. The 'single-gene circle' arrangement recently reported for dinoflagellate chloroplast genomes is a notable example of a highly derived organellar genome.  相似文献   

7.
Chloroplast DNA sequence data are a versatile tool for plant identification or barcoding and establishing genetic relationships among plant species. Different chloroplast loci have been utilized for use at close and distant evolutionary distances in plants, and no single locus has been identified that can distinguish between all plant species. Advances in DNA sequencing technology are providing new cost‐effective options for genome comparisons on a much larger scale. Universal PCR amplification of chloroplast sequences or isolation of pure chloroplast fractions, however, are non‐trivial. We now propose the analysis of chloroplast genome sequences from massively parallel sequencing (MPS) of total DNA as a simple and cost‐effective option for plant barcoding, and analysis of plant relationships to guide gene discovery for biotechnology. We present chloroplast genome sequences of five grass species derived from MPS of total DNA. These data accurately established the phylogenetic relationships between the species, correcting an apparent error in the published rice sequence. The chloroplast genome may be the elusive single‐locus DNA barcode for plants.  相似文献   

8.
A dinoflagellate bloom was found associated with a fish kill event in a South Carolina brackish water retention pond. A multi-analytical approach was used to confirm the identity of the bloom dinoflagellate and evaluate its potential toxicity. Karlodinium micrum was confirmed through light microscopy, pigment profile comparisons, species-specific PCR, and gene sequence data. Necropsy findings on several fish were suggestive of an acute kill event. Toxicity of filtrate from bloom samples was tested by a hemolytic assay using rainbow trout (Oncorhynchus mykis) erythrocytes and an ichthyotoxicity assay using larval zebrafish (Danio rerio). Hemolytic activity was measurably high (>80% hemolysis) in both whole filtrate and fractionated filtrate (from the 80% MeOH C18 column elution). This fraction also demonstrated high ichthyotoxic activity as exposed fish experienced rapid death. These results implicate toxic K. micrum as a causative factor in fish death in a non-aquaculture brackish pond associated with a housing development, and extend recent findings linking this species to fish kills in aquaculture ponds.  相似文献   

9.
《Journal of phycology》2001,37(Z3):16-16
Delwiche, C. F., and Bachvaroff, T. R. Cell Biology and Molecular Genetics, University of Maryland - College Park MD 20742-5815 USA The chloroplasts of dinoflagellates have been among the last chloroplasts to be studied with molecular phylogenetic methods. DNA sequences from peridinin-containing chloroplasts are now available, and have begun to be examined with molecular phylogenetic methods. The high rate of sequence evolution in these genes increases noise and makes analyses difficult. We have evaluated phylogenetic signal in several dinoflagellate chloroplast genes using parametric bootstrapping and other methods. Although some aspects of the tree topologies found in phylogenetic analyses of dinoflagellate chloroplast genes are clearly artifactual, there are some features that seem to reflect genuine phylogenetic information. We find support for the concept of monophyletic chromophyte chloroplasts, but contradictory information concerning the relationships among the host cells that contain these plastids. The best hope for determining the evolutionary history of chromophytic plastids lies in the analysis of nuclear-encoded, chloroplast expressed genes.  相似文献   

10.
To date, species identification of lichen photobionts has been performed principally on the basis of microscopic examinations and molecular data from nuclear-encoded genes. In plants, the chloroplast genome has been more readily exploited than the nuclear genome for systematic investigations. At the present time, very little information is available about the chloroplast genome of lichen-forming algae. For this reason, we have sequenced a portion of the gene encoding for the chloroplast large sub-unit rRNA (LSU rDNA) as a new molecular marker. Sequencing of the chloroplast LSU rDNAs revealed the existence of an unusual diversity of group I introns (a total of 31) within 15 analyzed Trebouxia species. The number, sequence and insertion site of these introns were very different among species, contributing to their recognition. A relatively large intron-free portion of the chloroplast LSU rDNA and part of the nuclear ribosomal cistron (18S–5.8S–26S) between the nuclear internal transcribed spacers (nrITS) were subjected to phylogenetic analyses. The obtained results indicate that data combination from both nuclear and chloroplast sequences can improve phylogenetic accuracy. Herein, we propose the suitability of both intronic and exonic sequences of the chloroplast LSU rDNA for species recognition, and an exonic sequence spanning from position 879 to 1837 in the Escherichia coli 23S rDNA for phylogenetic analyses of Trebouxia phycobionts.  相似文献   

11.
A molecular method using the polymerase chain reaction (PCR) amplification of small subunit gene sequences (18S rDNA) and denaturing gradient gel electrophoresis (DGGE) was used to determine both the population complexity and species identification of organisms in harmful algal blooms. Eighteen laboratory cultures of dinoflagellates, including Akashiwo, Gymnodinium, Heterocapsa, Karenia, Karlodinium, Pfiesteria, and Pfiesteria-like species were analyzed using dinoflagellate-specific oligonucleotide primers and DGGE. The method is sensitive and able to determine the number of species in a sample, as well as the taxonomic identity of each species, and is particularly useful in detecting differences between species of the same genus, as well as differences between morphologically similar species. Using this method, each of eight Pfiesteria-like species was verified as being clonal isolates of Pfiesteria piscicida. The sensitivity of dinoflagellate DGGE is approximately 1000 cells/ml, which is 100-fold less sensitive than real-time PCR. However, the advantage of DGGE lies in its ability to analyze dinoflagellate community structure without needing to know what is there, while real-time PCR provides much higher sensitivity and detection levels, if probes exist for the species of interest, attributes that complement DGGE analysis. In a blinded test, dinoflagellate DGGE was used to analyze two environmental fish kill samples whose species composition had been previously determined by other analyses. DGGE correctly identified the dominant species in these samples as Karlodinium micrum and Heterocapsa rotundata, proving the efficacy of this method on environmental samples. Toxin analysis of a clonal isolate obtained from the fish kill samples confirmed the presence of KmTx2, corroborating the earlier genetic identification of toxic K. micrum in the fish kill water sample.  相似文献   

12.
Bioluminescence is reported in members of 18 dinoflagellate genera. Species of dinoflagellates are known to have different bioluminescent signatures, making it difficult to assess the presence of particular species in the water column using optical tools, particularly when bioluminescent populations are in nonbloom conditions. A “universal” oligonucleotide primer set, along with species and genus‐specific primers specific to the luciferase gene were developed for the detection of bioluminescent dinoflagellates. These primers amplified luciferase sequences from bioluminescent dinoflagellate cultures and from environmental samples containing bioluminescent dinoflagellate populations. Novel luciferase sequences were obtained for strains of Alexandrium cf. catenella (Whedon et Kof.) Balech and Alexandrium fundyense Balech, and also from a strain of Gonyaulax spinifera (Clap. et Whitting) Diesing, which produces bioluminescence undetectable to the naked eye. The phylogeny of partial luciferase sequences revealed five significant clades of the dinoflagellate luciferase gene, suggesting divergence among some species and providing clues on their molecular evolution. We propose that the primers developed in this study will allow further detection of low‐light‐emitting bioluminescent dinoflagellate species and will have applications as robust indicators of dinoflagellate bioluminescence in natural water samples.  相似文献   

13.
Chloroplast DNA Sequence Homologies among Vascular Plants   总被引:2,自引:2,他引:2       下载免费PDF全文
The extent of sequence conservation in the chloroplast genome of higher plants has been investigated. Supercoiled chloroplast DNA, prepared from pea seedlings, was labeled in vitro and used as a probe in reassociation experiments with a high concentration of total DNAs extracted from several angiosperms, gymnosperms, and lower vascular plants. In each case the probe reassociation was accelerated, demonstrating that some chloroplast sequences have been highly conserved throughout the evolution of vascular plants. Only among the flowering plants were distinct levels of cross-reaction with the pea chloroplast probe evident; broad bean and barley exhibited the highest and lowest levels, respectively. With the hydroxylapatite assay these levels decreased with a decrease in probe fragment length (from 1,860 to 735 bases), indicating that many conserved sequences in the chloroplast genome are separated by divergent sequences on a rather fine scale. Despite differences observed in levels of homology with the hydroxylapatite assay, S1 nuclease analysis of heteroduplexes showed that outside of the pea family the extent of sequence relatedness between the probe and various heterologous DNAs is approximately the same: 30%. In our interpretation, the fundamental changes in the chloroplast genome during angiosperm evolution involved the rearrangement of this 30% with respect to the more rapidly changing sequences of the genome. These rearrangements may have been more extensive in dicotyledons than in monocotyledons. We have estimated the amount of conserved and divergent DNA interspersed between one another.  相似文献   

14.
15.
A small (7–11 μm long) dinoflagellate with thin amphiesmal plates was isolated into culture from a water sample collected in coastal waters of Yeosu, southern Korea, and examined by LM, SEM, and TEM, and molecular analyses. The hemispheric episome was smaller than the hyposome. The nucleus was oval and situated from the central to the episomal region of the cell. A large yellowish‐brown chloroplast was located at the end of the hyposome, and some small chloroplasts extended into the periphery of the episome. The dinoflagellate had a single elongated apical vesicle (EAV) and a type E eyespot, which are key characteristics of the family Suessiaceae. Unlike other genera in this family, it had two long furrow lines, one on the episome and the other on the hyposome, and encircling the dorsal, and lateral sides of the cell body. The pyrenoid lacked starch sheaths, but tubular invaginations into the pyrenoid matrix from the cytoplasm were observed. In the TEM, the dinoflagellate was observed to have cable‐like structures (CLSs) near the eyespot but so far not observed in other dinoflagellates. The SSU rDNA sequences examined were 1.2%–5.1% different from those of other genera in the family Suessiaceae, whereas the LSU (D1‐D3) rDNA sequences of this dinoflagellate were 15.1%–31.5% different. The dinoflagellate lacked a 51‐bp fragment in domain D2 of the LSU rDNA, but it had an ~100‐bp fragment in domain D2. This feature has been found previously only in the genera Leiocephalium and Polarella, two other genera of the Suessiaceae. The molecular phylogeny and sequence divergence based on SSU, and LSU rDNA indicate that the Korean dinoflagellate holds a taxonomically distinctive position and we consider it to be a new species in a new genus in the family Suessiaceae, named Yihiella yeosuensis gen. et sp. nov.  相似文献   

16.
A freshwater dinoflagellate was identified as Durinskia baltica (Levander) Carty & Cox by morphological characteristics,with the plate formula:Po,x,4',2a,6',5c,4s,5',2'.Durinskia was a newly recorded dinoflagellate genus for China with two anterior intercalary plates and six characteristic precingular plates.Partial sequences of the small and large subunit ribosomal DNA and internal transcribed spacer sequences for the dinoflagellate cells were obtained from field samples.Molecular phylogenetic results indicated Durinskia species could cluster into a monophyletic group,which were distinct from Peridinium species.According to morphological and molecular evidence,it was agreed that the genus Durinskia was separated from the genus Peridinium,which could be a polyphyletic group.In addition,D.baltica was an infrequent diatom-harboring dinoflagellate which was known to possess an endosymbiotic diatom or diatom-like alga.The phylogenetic analyses indicated that D.baltica had a close affinity with Peridiniopsis penardii and P.niei,common freshwater bloom-forming species in China.  相似文献   

17.
We used DNA sequencing and gel blot surveys to assess the integrity of the chloroplast gene infA, which codes for translation initiation factor 1, in >300 diverse angiosperms. Whereas most angiosperms appear to contain an intact chloroplast infA gene, the gene has repeatedly become defunct in approximately 24 separate lineages of angiosperms, including almost all rosid species. In four species in which chloroplast infA is defunct, transferred and expressed copies of the gene were found in the nucleus, complete with putative chloroplast transit peptide sequences. The transit peptide sequences of the nuclear infA genes from soybean and Arabidopsis were shown to be functional by their ability to target green fluorescent protein to chloroplasts in vivo. Phylogenetic analysis of infA sequences and assessment of transit peptide homology indicate that the four nuclear infA genes are probably derived from four independent gene transfers from chloroplast to nuclear DNA during angiosperm evolution. Considering this and the many separate losses of infA from chloroplast DNA, the gene has probably been transferred many more times, making infA by far the most mobile chloroplast gene known in plants.  相似文献   

18.
To determine its accurate taxonomic position, a tidal pool bloom-forming dinoflagellate, Scrippsiella hexapraecingula was re-investigated using light, scanning and transmission electron microscopy together with a phylogenetic analysis based on concatenated ribosomal DNA sequences. The culture strains used in this study were established from intertidal rock pool samples taken from Jogashima, Kanagawa prefecture and Heisaura, Chiba prefecture, Japan and were identified as S. hexapraecingula originally described by Horiguchi and Chihara from a tidal pool in Hachijo Island, Tokyo, Japan in 1983. The thecal plate arrangement was determined as Po, X, 4′, 3a, 6″, 6c, 5s, 5″′, 2″″. The internal structure was investigated for the first time. The organism has typical dinoflagellate cellular organelles such as a dinokaryotic nucleus, mitochondria with tubular cristae, trichocysts and pusule. The chloroplast was single and connected to the central pyrenoid (stalked type). The eyespot found in the sulcus is of the B type with two rows of superficial intraplastidal lipid globules directly overlain by an extraplastidal single layer of crystalline bricks enveloped by a common membrane. The apical pore is plugged by a double-layered stub-like structure. Stalk building material for attachment covered the apical pore. Phylogenetic analysis indicated that S. hexapraecingula was most closely related to a freshwater dinoflagellate, Peridiniopsis borgei, the type species of the genus Peridiniopsis. However, clear differences exist between these two organisms, including their thecal plate arrangement, habitat and habit. As a result, a new genus, Chiharadinium Dawut & T. Horiguchi gen. nov. has been proposed rather than attempting to accommodate S. hexapraecingula in the genus Peridiniopsis. The new combination, Chiharadinium hexapraecingulum (T. Horiguchi & Chihara) Dawut & T. Horiguchi comb. nov. has been proposed.  相似文献   

19.
Amyloodiniosis, caused by the dinoflagellate ectoparasite Amyloodinium ocellatum, is one of the most serious diseases affecting marine fish in warm and temperate waters. Current diagnostic methods rely entirely on the microscopic identification of parasites on the skin or gills of infested fish. However, subclinical infestations usually go undetected, while no method of detecting the free-swimming, infective (dinospore) stage has been devised. Targeting the parasite's ribosomal DNA region, we have developed a sensitive and specific PCR assay that can detect as little as a single cell from any of the 3 stages of the parasite's life cycle (trophont, tomont, dinospore). This assay performs equally well in a simple artificial seawater medium and in natural seawater containing a plankton community assemblage. The assay is also not inhibited by gill tissue. Sequence analysis of the internal transcribed spacer region of 5 A. ocellatum isolates, obtained from fish in the Red Sea (Israel), eastern Mediterranean Sea (Israel), Adriatic Sea (Italy), Gulf of Mexico (Florida), and from an unknown origin, revealed insignificant variation, indicating that all isolates were the same species. However, 3 of these isolates propagated in cell culture varied in behavior and morphology, and these differences were consistent during at least 2 yr in culture. Thus, our findings do not eliminate the possibility that different strains are in fact 'subspecies' or lower taxa, which may also differ in pathogenic and immunogenic characteristics, environmental tolerance, and other features.  相似文献   

20.
Thalassicolla nucleata, a solitary radiolarian, has been described as being parasitized by two dinoflagellates, Solenodinium (Syndiniales) and Caryotoma (Blastodiniales). Several T. nucleata were stripped of their extracapsular material and allowed to regenerate their rhizopodial structures without symbionts. Within a week, two were observed to disintegrate, leaving behind non-pigmented swimming dinoflagellate cells. Identical full-length ribosomal sequences were recovered from both samples. Upon alignment and phylogenetic analysis, it was determined that these putative parasite sequences were distinct from Scrippsiella nutricula (the dinoflagellate symbiont of the host), and also from all other dinoflagellate parasites sequenced to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号