首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

2.
The circadian rhythm of black pigment migration of melanophores of the crab Chasmagnathus granulata and the variation in responsiveness of these cells to pigment-dispersing hormone (beta-PDH), crustacean cardioactive peptide (CCAP), and red pigment-concentrating hormone (RPCH) were investigated. Melanophores of C. granulata possess an endogenous circadian rhythm of pigment migration, with black pigments staying more dispersed during the day period and more aggregated during the night period. This rhythm seems to be largely dependent on an endogenous release of neurohormones from eyestalks, and to a lesser extent on a primary response to illumination. beta-PDH was the most potent PDH isoform to induce pigment dispersion in both in vivo (EC50 = 0.4 pmol/animal) and in vitro (EC50 = 0.18 microM) assays. CCAP also induced pigment dispersion in vivo and in vitro assays (EC50 = 12 microM), but it was less potent than beta-PDH. In vivo, RPCH induced a low and nondose-dependent pigment aggregation, while in vitro, it had no effect on pigment migration. The responsiveness of melanophores of C. granulata to beta-PDH was significantly higher during the day period when compared to the night period in both assays, in vitro and in vivo. These results suggest that the endogenous circadian rhythm of black pigment migration is dependent on both endogenous circadian rhythm of beta-PDH synthesis and/or release from eyestalks and on an endogenous rhythm of responsiveness of melanophores to beta-PDH.  相似文献   

3.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm2 UVA and 8.6 J/cm2 UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm2 UVA and 0.29 J/cm2 UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

4.
We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A.  相似文献   

5.
Melanosome movement represents a good model of cytoskeleton-mediated transport of organelles in eukaryotic cells. We recently observed that inhibiting nitric oxide synthase (NOS) with Nomega-nitro-L-arginine methyl ester (L-NAME) induced dispersion in melanophores pre-aggregated with melatonin. Activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) or calcium-dependent protein kinase (PKC) is known to cause dispersion. Also, PKC and NO have been shown to regulate the mitogen/extracellular signal-regulated kinase (MEK)-ERK pathway. Accordingly, our objective was to further characterize the signaling pathway of L-NAME-induced dispersion. We found that the dispersion was decreased by staurosporine and PD98059, which respectively inhibit PKC and MEK, but not by the PKA inhibitor H89. Furthermore, Western blotting revealed that ERK1 kinase was phosphorylated in L-NAME-dispersed melanophores. L-NAME also caused dispersion in latrunculin-B-treated cells, suggesting that this effect is not due to inhibition of the melatonin signaling pathway. Summarizing, we observed that PKC and MEK inhibitors decreased the L-NAME-induced dispersion, which caused phosphorylation of ERK1. Our results also suggest that NO is a negative regulator of phosphorylations that leads to organelle transport.  相似文献   

6.
Melanosome movement represents a good model of cytoskeleton‐mediated transport of organelles in eukaryotic cells. We recently observed that inhibiting nitric oxide synthase (NOS) with Nω‐nitro‐l ‐arginine methyl ester (l ‐NAME) induced dispersion in melanophores pre‐aggregated with melatonin. Activation of cyclic adenosine 3′,5′‐monophosphate (cAMP)‐dependent protein kinase (PKA) or calcium‐dependent protein kinase (PKC) is known to cause dispersion. Also, PKC and NO have been shown to regulate the mitogen/extracellular signal‐regulated kinase (MEK)‐ERK pathway. Accordingly, our objective was to further characterize the signaling pathway of l ‐NAME‐induced dispersion. We found that the dispersion was decreased by staurosporine and PD98059, which respectively inhibit PKC and MEK, but not by the PKA inhibitor H89. Furthermore, Western blotting revealed that ERK1 kinase was phosphorylated in l ‐NAME‐dispersed melanophores. l ‐NAME also caused dispersion in latrunculin‐B‐treated cells, suggesting that this effect is not due to inhibition of the melatonin signaling pathway. Summarizing, we observed that PKC and MEK inhibitors decreased the l ‐NAME‐induced dispersion, which caused phosphorylation of ERK1. Our results also suggest that NO is a negative regulator of phosphorylations that leads to organelle transport.  相似文献   

7.
Major signaling cascades have been shown to play a role in the regulation of intracellular transport of organelles. In Xenopus melanophores, aggregation and dispersion of pigment granules are regulated by the second messenger cyclic AMP through the protein kinase A (PKA) signaling pathway. PKA is bound to pigment granules where it forms complexes with molecular motors involved in pigment transport. Association of PKA with pigment granules occurs through binding to A-kinase-anchoring proteins (AKAPs), whose identity remains largely unknown. In this study, we used mass spectrometry to examine an 80 kDa AKAP detected in preparations of purified pigment granules. We found that tryptic digests of granule protein fractions enriched in the 80 kDa AKAP contained peptides that corresponded to the actin-binding protein moesin, which has been shown to function as an AKAP in mammalian cells. We also found that recombinant Xenopus moesin interacted with PKA in vitro , copurified with pigment granules and bound to pigment granules in cells. Overexpression in melanophores of a mutant moesin lacking conserved PKA-binding domain did not affect aggregation of pigment granules but partially inhibited their dispersion. We conclude that Xenopus moesin is an AKAP whose PKA-scaffolding activity plays a role in the regulation of pigment dispersion in Xenopus melanophores.  相似文献   

8.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

9.
Functional interactions between ligands and their cognate receptors can be investigated using the ability of melanophores from Xenopus laevis to disperse or aggregate their pigment granules in response to alterations in the intracellular levels of second messengers. We have examined the response of long-term lines of cultured melanophores from X. laevis to pituitary adenylate cyclase activating peptide (PACAP), a neuropeptide with vasodilatory activity, and maxadilan, a vasodilatory peptide present in the salivary gland extracts of the blood feeding sand fly. Pituitary adenylate cyclase activating peptide increased the intracellular levels of cyclic adenosine monophosphate (cAMP) and induced pigment dispersion in the pigment cells, confirming that melanophores express an endogenous PACAP receptor. Maxadilan did not induce a response in non-transfected melanophores. When the melanophores were transfected with complementary DNA (cDNA) from the three different members of the PACAP receptor family, maxadilan induced pigment dispersion specifically and cAMP accumulation in melanophores transfected with the cDNA for PAC1 receptors but not VPAC1 or VPAC2 receptors. A melanophore line was generated that stably expresses the PAC1 receptor.  相似文献   

10.
Functional interactions between ligands and their cognate receptors can be investigated using the ability of melanophores from Xenopus laevis to disperse or aggregate their pigment granules in response to alterations in the intracellular levels of second messengers. We have examined the response of long‐term lines of cultured melanophores from X. laevis to pituitary adenylate cyclase activating peptide (PACAP), a neuropeptide with vasodilatory activity, and maxadilan, a vasodilatory peptide present in the salivary gland extracts of the blood feeding sand fly. Pituitary adenylate cyclase activating peptide increased the intracellular levels of cyclic adenosine monophosphate (cAMP) and induced pigment dispersion in the pigment cells, confirming that melanophores express an endogenous PACAP receptor. Maxadilan did not induce a response in non‐transfected melanophores. When the melanophores were transfected with complementary DNA (cDNA) from the three different members of the PACAP receptor family, maxadilan induced pigment dispersion specifically and cAMP accumulation in melanophores transfected with the cDNA for PAC1 receptors but not VPAC1 or VPAC2 receptors. A melanophore line was generated that stably expresses the PAC1 receptor.  相似文献   

11.
Crustaceans are interesting models to study the effects of ultraviolet (UV) radiation, and many species may be used as biomarkers for aquatic contamination of UV radiation reaching the surface of the Earth. Here, we investigated cell damage in the visual system of crabs Neohelice granulata that were acclimated to either 12L:12D, constant light, or constant dark, and were exposed to UVA or UVB at 12:00 h (noon). The production of reactive oxygen species (ROS), antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO) damage, catalase activity, and pigment dispersion in the eye were evaluated. No significant differences from the three groups of controls (animals acclimated to 12L:12D, or in constant light, or not exposed to UV radiation) were observed in animals acclimated to 12L:12D, however, crabs acclimated to constant light and exposed to UV radiation for 30 min showed a significant increase in ROS concentration, catalase activity, and LPO damage, but a decrease in ACAP compared with the controls. Crabs acclimated to constant darkness and exposed to UV for 30 min showed a significantly increased ROS concentration and LPO damage, but the ACAP and catalase activity did not differ from the controls (animals kept in the dark while the experimental group was being exposed to UV radiation). Pigment dispersion in the pigment cells of eyes of animals acclimated to constant light was also observed. The results indicate that UVA and UVB alter specific oxidative parameters; however, the cell damage is more evident in animals deviated from the normal dark/light rhythm.  相似文献   

12.
UV radiation is known to induce lymphocyte nonresponsiveness both in vitro and in vivo. We have found that UV radiation rapidly induced tyrosine phosphorylation and calcium signaling in normal human peripheral blood lymphocytes. In the leukemic T cell line Jurkat and the Burkitt's lymphoma cell line Ramos, UV rapidly induced tyrosine phosphorylation in a wavelength-dependent manner, giving strong signals after UVB and UVC, but not UVA, irradiation. Similarly, in Jurkat cells UV-induced calcium signals were dependent on the dose of UVB or UVC irradiation over a range of 150-1200 J/m2, but only a small signal was observed for UVA at a dose of 1200 J/m2. The UV-induced calcium signals were blocked by the tyrosine kinase inhibitor herbimycin A, indicating that they were dependent on tyrosine phosphorylation. Phospholipase C (PLC) gamma 1 was tyrosine phosphorylated in response to UV irradiation but to a lesser extent than observed after CD3 cross-linking. However, PLC gamma 1-associated proteins demonstrated to bind to the PLC gamma 1 SH2 domain were tyrosine phosphorylated strongly after UV irradiation. A similar dose response was observed for the inhibition by herbimycin A of UV-induced calcium signals and UV-induced tyrosine phosphorylation of PLC gamma 1 and associated proteins. We propose that in contrast to CD3/Ti stimulation, UV aberrantly triggers lymphocyte signal transduction pathways by a mechanism that bypasses normal receptor control.  相似文献   

13.
Striatal cholinergic interneurons are stimulated by glutamatergic inputs from thalamus and cortex via NMDA receptors. The present microdialysis study was designed to characterize the role of nitric oxide (NO) in this process and to identify the NO synthase (NOS) isoform responsible for this effect. For this purpose, we studied the effects of NMDA and 3-morpholino sydnonimine (SIN-1) perfusions on the release of acetylcholine (ACh) in mouse striatum. In wild-type C57/Bl6 mice, perfusion of NMDA (100 micro m) induced a two-fold stimulation of ACh release. This effect was attenuated in mice lacking endothelial NOS but was completely absent in mice lacking neuronal NOS. Local perfusion of SIN-1 (300 micro m), an NO donor, increased ACh release by more than two-fold in all three mouse lines. We conclude that NO synthesized by neuronal NOS provides a nitrergic link in the glutamatergic stimulation of striatal cholinergic interneurons.  相似文献   

14.
Macrophages (Mps) can exert the defense against invading pathogens. During sepsis, bacterial lipopolisaccharide (LPS) activates the production of inflammatory mediators by Mps. Nitric oxide synthase (NOS) derived‐nitric oxide (NO) is one of them. Besides, Mps may produce pro‐angiogenic molecules such as vascular endothelial growth factor‐A (VEGF‐A) and metalloproteinases (MMPs). The mechanisms involved in the cardiac neovascular response by Mps during sepsis are not completely known. We investigated the ability of LPS‐treated Mps from septic mice to modulate the behavior of cardiac cells as producers of NO and angiogenic molecules. In vivo LPS treatment (0.1 mg/mouse) increased NO production more than fourfold and induced de novo NOS2 expression in Mps. Immunoblotting assays also showed an induction in VEGF‐A and MMP‐9 expression in lysates obtained from LPS‐treated Mps, and MMP‐9 activity was detected by zymography in cell supernatants. LPS‐activated Mps co‐cultured with normal heart induced the expression of CD31 and VEGF‐A in heart homogenates and increased MMP‐9 activity in the supernatants. By immunohistochemistry, we detected new blood vessel formation in hearts cultured with LPS treated Mps. When LPS‐stimulated Mps were co‐cultured with isolated cardiomyocytes in a transwell assay, the expression of NOS2, VEGF‐A and MMP‐9 was induced in cardiac cells. In addition, MMP‐9 activity was up‐regulated in the supernatant of cardiomyocytes. The latter was due to NOS2 induction in Mps from in vivo LPS‐treated mice. In conclusion LPS‐treated Mps are inducers of inflammatory/angiogenic mediators in cardiac cells, which could be triggering neovascularization, as an attempt to improve cardiac performance in sepsis. J. Cell. Physiol. 228: 1584–1593, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Winter flounder Pleuronectes americanus has a thick epidermis which was removed from scale slips by incubation in a medium including 1% ethylenediaminetetraacetic acid (EDTA) for up to 2 h. Neurally mediated responses of dermal melanophores to K+ and Na+, and to exogenous noradrenaline (10-5 M) were 1·5 to three times faster without the epidermis–mucus barrier; α-melanophore stimulating hormone (MSH) evoked extensive pigment dispersion only without the epidermis. Thus, cellular viability after epidermal removal is not restricted to melanophores, nerve terminals can provide an additional indicator. The sensitivity to α-MSH in vitro , is an important observation since in vivo reports have not indicated that this hormone has a role in the physiological responsiveness of these melanophores in flatfish.  相似文献   

16.
Ultraviolet (UV) B irradiation evokes erythema and delayed pigmentation in skin, where a variety of toxic and modulating events are known to be involved. Nitric oxide (NO) is generated from l ‐arginine by NO synthases (NOS). Production of NO is enhanced in response to UVB‐stimulation and has an important role in the development of erythema. NO has recently been demonstrated as a melanogen which stimulates melanocytes in vitro, however, no known in vivo data has been reported to support this finding. In this study, we investigated the contribution of NO with UV‐induced pigmentation in an animal model using an NOS inhibitor. UVB‐induced erythema in guinea pig skin was reduced when an NOS inhibitor, l ‐NAME (N‐nitro‐ l ‐arginine methylester hydrochloride), was topically applied to the skin daily, beginning 3 days before UVB‐irradiation. Delayed pigmentation and an increased number of DOPA‐positive melanocytes in the skin were markedly suppressed by sequential daily treatment with l ‐NAME. Furthermore, melanin content 13 days after UVB‐irradiation was significantly lower in skin treated with l ‐NAME than in the controls. In contrast, d ‐NAME (N‐nitro‐ d ‐arginine methylester hydrochloride), an ineffective isomer of l ‐NAME, demonstrated no effect on these UV‐induced skin responses. These results suggest that NO production may contribute to the regulation of UVB‐induced pigmentation.  相似文献   

17.
Bone resorption is responsible for the morbidity associated with a number of inflammatory diseases such as rheumatoid arthritis, orthopedic implant osteolysis, periodontitis and aural cholesteatoma. Previous studies have established nitric oxide (NO) as a potentially important mediator of bone resorption. NO is a unique intercellular and intracellular signaling molecule involved in many physiologic and pathologic pathways. NO is generated from L-arginine by the enzyme nitric oxide synthase (NOS). There are three known isoforms of NOS with distinct cellular distributions. In this study, we have used mice with targeted deletions in each of these isoforms to establish a role for these enzymes in the regulation of bone resorption in vivo and in vitro. In a murine model of particle induced osteolysis, NOS I-/- mice demonstrated a significantly reduced osteoclast response. In vitro, osteoclasts derived from NOS I-/- mice were larger than wild type controls but demonstrated decreased resorption. Although NOS I has been demonstrated in osteoblasts and osteocytes as a mediator of adaptive bone remodeling, it has not previously been identified in osteoclasts. These results demonstrate a critical role for NOS I in inflammatory bone resorption and osteoclast function in vitro.  相似文献   

18.
19.
Chronic exposure to solar radiation is the primary cause of photoaging and benign and malignant skin tumors. A conditioned serum-free medium (SFM) was prepared from umbilical cord mesenchymal stem cells (UC-MSCs) and its anti-photoaging effect, following chronic UV irradiation in vitro and in vivo, was evaluated. UC-MSC SFM had a stimulatory effect on human dermal fibroblast proliferation and reduced UVA-induced cell death. In addition, UC-MSC SFM blocked UVA inhibition of superoxide dismutase activity. Topical application of UC-MSC SFM to mouse skin prior to UV irradiation blocked the inhibition of superoxide dismutase and glutathione peroxidase activities, and prevented the upregulation of malonaldehyde. UC-MSC SFM thus protects against photoaging induced by UVA and UVB radiation and is a promising candidate for skin anti-photoaging treatments.  相似文献   

20.
In melanophores of the peppered catfish and the Nile tilapia, melanin-concentrating hormone (MCH) at low doses (<1 μM) induced pigment aggregation, and the aggregated state was maintained in the presence of MCH. However, at higher MCH concentrations (such as 1 and 10 μM), pigment aggregation was immediately followed by some re-dispersion, even in the continued presence of MCH, which led to an apparent decrease in aggregation. This pigment-dispersing activity at higher concentrations of MCH required extracellular Ca2+ ions. By contrast, medaka melanophores responded to MCH only by pigment aggregation, even at the highest concentration employed (10 μM). Since it is known that medaka melanophores possess specific receptors for α-melanophore-stimulating hormone (α-MSH), the possibility that interaction between MSH receptors and MCH at high doses in the presence of Ca2+ might cause pigment dispersion is ruled out. Cyclic MCH analogs, MCH (1–14) and MCH (5–17), failed to induce pigment dispersion, whereas they induced aggregation of melanin granules. These results suggest that another type of MCH receptor that mediates pigment dispersion is present in catfish and tilapia melanophores, and that intact MCH may be the only molecule that can bind to these receptors. Determinations of cAMP content in melanophores, which were isolated from the skin of three fish species and treated with 10 nM or 10 μM MCH, indicate that MCH receptors mediating aggregation may be coupled with Gi protein, whereas MCH receptors that mediate dispersion may be linked to Gs. The response of erythrophores, xanthophores and leucophores to MCH at various concentrations was also examined, and the results suggest that the distribution patterns of the two types of MCH receptors may differ among fish species and among types of chromatophore in the same fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号