首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varicella-zoster virus (VZV) is a human alphaherpesvirus that infects sensory ganglia and reactivates from latency to cause herpes zoster. VZV replication was examined in human dorsal root ganglion (DRG) xenografts in mice with severe combined immunodeficiency using multiscale correlative immunofluorescence and electron microscopy. These experiments showed the presence of VZV genomic DNA, viral proteins, and virion production in both neurons and satellite cells within DRG. Furthermore, the multiscale analysis of VZV-host cell interactions revealed virus-induced cell-cell fusion and polykaryon formation between neurons and satellite cells during VZV replication in DRG in vivo. Satellite cell infection and polykaryon formation in neuron-satellite cell complexes provide mechanisms to amplify VZV entry into neuronal cell bodies, which is necessary for VZV transfer to skin in the affected dermatome during herpes zoster. These mechanisms of VZV neuropathogenesis help to account for the often severe neurologic consequences of herpes zoster.  相似文献   

2.
3.
Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella during primary infection. VZV reactivation from neuronal latency may cause herpes zoster, post herpetic neuralgia (PHN) and other neurologic syndromes. To investigate VZV neuropathogenesis, we developed a model using human dorsal root ganglia (DRG) xenografts in immunodeficient (SCID) mice. The SCID DRG model provides an opportunity to examine characteristics of VZV infection that occur in the context of the specialized architecture of DRG, in which nerve cell bodies are ensheathed by satellite glial cells (SGC) which support neuronal homeostasis. We hypothesized that VZV exhibits neuron-subtype specific tropism and that VZV tropism for SGC contributes to VZV-related ganglionopathy. Based on quantitative analyses of viral and cell protein expression in DRG tissue sections, we demonstrated that, whereas DRG neurons had an immature neuronal phenotype prior to implantation, subtype heterogeneity was observed within 20 weeks and SGC retained the capacity to maintain neuronal homeostasis longterm. Profiling VZV protein expression in DRG neurons showed that VZV enters peripherin+ nociceptive and RT97+ mechanoreceptive neurons by both axonal transport and contiguous spread from SGC, but replication in RT97+ neurons is blocked. Restriction occurs even when the SGC surrounding the neuronal cell body were infected and after entry and ORF61 expression, but before IE62 or IE63 protein expression. Notably, although contiguous VZV spread with loss of SGC support would be predicted to affect survival of both nociceptive and mechanoreceptive neurons, RT97+ neurons showed selective loss relative to peripherin+ neurons at later times in DRG infection. Profiling cell factors that were upregulated in VZV-infected DRG indicated that VZV infection induced marked pro-inflammatory responses, as well as proteins of the interferon pathway and neuroprotective responses. These neuropathologic changes observed in sensory ganglia infected with VZV may help to explain the neurologic sequelae often associated with zoster and PHN.  相似文献   

4.
5.
Previous analyses using in situ hybridization alone or together with PCR have yielded conflicting results regarding the cell type in which latent varicella-zoster virus (VZV) resides. We separated human trigeminal ganglia (TG) into neuronal and nonneuronal fractions, followed by primary and nested PCR to quantitate VZV DNA at the single cell level. Both TG from each of eight cadavers were dissociated and separated into neuronal and nonneuronal cell suspensions by differential filtration. Analysis of the neuron fraction (5,000 neurons per sample) revealed VZV DNA in 9 of 16 samples, with copy numbers ranging from 1 to 12, whereas only 2 of 16 nonneuronal cell samples were positive for VZV DNA, with 1 copy each. Further analysis of 10 samples of 100 neurons and the corresponding nonneuronal cell fractions from each TG of a single subject revealed VZV DNA in 3 of 10 samples of the left TG (range, 2 to 5 copies) and in 1 of 10 samples of the right TG (2 copies) but in none of the 20 nonneuronal cell fractions. These data indicate that latent VZV DNA is present primarily, if not exclusively, in neurons, at a frequency of two to five copies per latently infected neuron.  相似文献   

6.
7.
8.
The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.  相似文献   

9.
Study of the human neurotrophic herpesvirus varicella-zoster virus (VZV) and of its ability to infect neurons has been severely limited by strict viral human tropism and limited availability of human neurons for experimentation. Human embryonic stem cells (hESC) can be differentiated to all the cell types of the body including neurons and are therefore a potentially unlimited source of human neurons to study their interactions with human neurotropic viruses. We report here reproducible infection of hESC-derived neurons by cell-associated green fluorescent protein (GFP)-expressing VZV. hESC-derived neurons expressed GFP within 2 days after incubation with mitotically inhibited MeWo cells infected with recombinant VZV expressing GFP as GFP fusions to VZV proteins or under an independent promoter. VZV infection was confirmed by immunostaining for immediate-early and viral capsid proteins. Infection of hESC-derived neurons was productive, resulting in release into the medium of infectious virions that appeared fully assembled when observed by electron microscopy. We also demonstrated, for the first time, VZV infection of axons and retrograde transport from axons to neuronal cell bodies using compartmented microfluidic chambers. The use of hESC-derived human neurons in conjunction with fluorescently tagged VZV shows great promise for the study of VZV neuronal infection and axonal transport and has potential for the establishment of a model for VZV latency in human neurons.  相似文献   

10.
11.
M Kress  H Fickenscher 《FASEB journal》2001,15(6):1037-1043
Varicella-zoster virus (VZV) is a widespread human herpes virus causing chicken pox on primary infection and persisting in sensory neurons. Reactivation causes shingles, which are characterized by severe pain and often lead to postherpetic neuralgia. To elucidate the mechanisms of VZV-associated hyperalgesia, we elaborated an in vitro model for the VZV infection of sensory neurons from rat dorsal root ganglia. Between 35 and 50% of the neurons showed strong expression of the immediate-early virus antigens IE62 and IE63 and the late glycoprotein gE. When the intracellular calcium concentration was monitored microfluorometrically for individual cells after infection, the sensitivity to GABA or capsaicin was similar in controls and in VZV-infected neurons. However, the baseline calcium concentration was increased. Neurons became de novo sensitive to adrenergic stimulation after VZV infection. Norepinephrine-responsive neurons were more frequent and calcium responses to norepinephrine were significantly higher after infection with wild-type isolates than with the attenuated vaccine strain OKA. The adrenergic agonists phenylephrine and isoproterenol had similar efficacy. We suggest that the infection with wild-type VZV isolates confers norepinephrine sensitivity to sensory neurons by using alpha(1)- and/or beta(1)-adrenergic receptors providing a model for the pathophysiology of the severe pain associated with the acute reactivation of VZV.  相似文献   

12.
In its course of human infection, varicella-zoster virus (VZV) infects rarely dividing cells such as dermal fibroblasts, differentiated keratinocytes, mature T cells, and neurons, none of which are actively synthesizing DNA; however, VZV is able to productively infect them and use their machinery to replicate the viral genome. We hypothesized that VZV alters the intracellular environment to favor viral replication by dysregulating cell cycle proteins and kinases. Cyclin-dependent kinases (CDKs) and cyclins displayed a highly unusual profile in VZV-infected confluent fibroblasts: total amounts of CDK1, CDK2, cyclin B1, cyclin D3, and cyclin A protein increased, and kinase activities of CDK2, CDK4, and cyclin B1 were strongly and simultaneously induced. Cyclins B1 and D3 increased as early as 24 h after infection, concurrent with VZV protein synthesis. Confocal microscopy indicated that cyclin D3 overexpression was limited to areas of IE62 production, whereas cyclin B1 expression was irregular across the VZV plaque. Downstream substrates of CDKs, including pRb, p107, and GM130, did not show phosphorylation by immunoblotting, and p21 and p27 protein levels were increased following infection. Finally, although the complement of cyclin expression and high CDK activity indicated a progression through the S and G(2) phases of the cell cycle, DNA staining and flow cytometry indicated a possible G(1)/S blockade in infected cells. These data support earlier studies showing that pharmacological CDK inhibitors can inhibit VZV replication in cultured cells.  相似文献   

13.
Pluripotent human stem cells are a powerful tool for the generation of differentiated cells that can be used for the study of human disease. We recently demonstrated that neurons derived from pluripotent human embryonic stem cells (hESC) can be infected by the highly host-restricted human alphaherpesvirus varicella-zoster virus (VZV), permitting the interaction of VZV with neurons to be readily evaluated in culture. In the present study, we examine whether pluripotent hESC and neural progenitors at intermediate stages of differentiation are permissive for VZV infection. We demonstrate here that VZV infection is blocked in naïve hESC. A block to VZV replication is also seen when a bacterial artificial chromosome (BAC) containing the VZV genome is transfected into hESC. In contrast, related alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PrV) productively infect naïve hESC in a cell-free manner, and PrV replicates from a BAC transfected into hESC. Neurons differentiate from hESC via neural progenitor intermediates, as is the case in the embryo. The first in vitro stage at which permissiveness of hESC-derived neural precursors to VZV replication is observed is upon formation of “neurospheres,” immediately after detachment from the inductive stromal feeder layer. These findings suggest that hESC may be useful in deciphering the yet enigmatic mechanisms of specificity of VZV infection and replication.  相似文献   

14.
Varicella-zoster virus (VZV) is a species-specific herpesvirus which infects sensory ganglia. We have developed a model of infection of human intact explant dorsal root ganglia (DRG). Following exposure of DRG to VZV, viral antigens were detected in neurons and nonneuronal cells. Enveloped virions were visualized by transmission electron microscopy in neurons and nonneuronal cells and within the extracellular space. Moreover, rather than remaining highly cell associated during infection of cultured cells, such as fibroblasts, cell-free VZV was released from infected DRG. This model enables VZV infection of ganglionic cells to be studied in the context of intact DRG.  相似文献   

15.
Five minority populations of aberrant, varicella-zoster virus (VZV)-derived genomes were identified among the encapsidated DNAs obtained from the nuclear and cytoplasmic fractions of an in vitro infection initiated with a lyophilized sample of the BIKEN VZV vaccine (strain Oka). These were (i) VZV genomes, present within nuclear but not cytoplasmic viral capsids, which had been cleaved at a specific site within the short segment and which were, therefore, 3.15 megadaltons (approximately 4% of the VZV genome length) short of full length; (ii) highly deleted, repetitive VZV genomes which contained the errant cleavage site but not the usual VZV genome terminal sequences; (iii) VZV genomes into which multiples of 1 through 5 defective genome repeat units had been inserted into a homologous site; (iv) VZV genomes with additions of 0.1 or 0.18 megadaltons of DNA at both the terminal and internal ends of the short segment; and (v) VZV DNA which had lost the HindIII restriction site at map position 0.11.  相似文献   

16.
A new method for detection of varicella-zoster virus (VZV) DNA using field-inversion gel electrophoresis (FIGE) was devised. VZV-genomic DNA could be differentiated from the host cell DNA of human embryonic lung (HEL) fibroblasts infected with VZV under electrophoretic conditions allowing resolution of linear and double-stranded DNAs in the 49-230 kilobase pairs (Kb) range. The detection of VZV-genomic DNA from infected HEL cells was successful regardless of whether the VZV was a laboratory strain, live vaccine strain, or fresh isolate. Under the same electrophoretic conditions, DNA of VZV-infected HEL cells could be clearly differentiated from DNA obtained from HEL cells infected with herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), or human cytomegalovirus (HCMV). Furthermore, VZV genomic DNA could be detected from as small a sample as 1.9 x 10(4) VZV-infected HEL cells. Finally, we could detect VZV genomic DNA from 10 samples of vesicle tissue (blister lids, each about 1-4 mm2) and one sample of vesicle fluid (about 5 microliters) obtained from patients diagnosed as having herpes-zoster. The results of this study indicate that FIGE is a simple and promising method for the detection of VZV from clinical materials as well as infected in vitro cultured cells.  相似文献   

17.
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.  相似文献   

18.
19.
Configuration of latent varicella-zoster virus DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
P Clarke  T Beer  R Cohrs    D H Gilden 《Journal of virology》1995,69(12):8151-8154
The configuration of latent varicella-zoster virus (VZV) DNA was analyzed by PCR. Template DNA for both internal and terminal VZV primers was present in a 1:1 ratio in ganglionic DNA, compared with a 15:1 ratio in DNA extracted from VZV virions, indicating that the VZV genomic termini are adjacent in latently infected human ganglia.  相似文献   

20.
Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号