首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown.  相似文献   

2.

Background  

In eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes.  相似文献   

3.

Background  

Working at high solids (substrate) concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown.  相似文献   

4.

Background  

Laccases are multi-copper oxidases that catalyze the one electron oxidation of a broad range of compounds. Laccase substrates include substituted phenols, arylamines and aromatic thiols. Such compounds are activated by the enzyme to the corresponding radicals. Owing to their broad substrate range laccases are considered to be versatile biocatalysts which are capable of oxidizing natural and non-natural industrial compounds, with water as sole by-product.  相似文献   

5.

Background  

Whole-cell biocatalysis in organic solvents has been widely applied to industrial bioprocesses. In two-phase water-solvent processes, substrate conversion yields and volumetric productivities can be limited by the toxicity of solvents to host cells and by the low mass transfer rates of the substrates from the solvent phase to the whole-cell biocatalysts in water.  相似文献   

6.

Background  

Alternative splicing is an important mechanism mediating the diversified functions of genes in multicellular organisms, and such event occurs in around 40-60% of human genes. Recently, a new splice-junction wobbling mechanism was proposed that subtle modifications exist in mRNA maturation by alternatively choosing at 5'- GTNGT and 3'- NAGNAG, which created single amino acid insertion and deletion isoforms.  相似文献   

7.

Background  

Aquaporins, also called major intrinsic proteins (MIPs), constitute an ancient superfamily of channel proteins that facilitate the transport of water and small solutes across cell membranes. MIPs are found in almost all living organisms and are particularly abundant in plants where they form a divergent group of proteins able to transport a wide selection of substrates.  相似文献   

8.
9.

Background  

Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in pathogenesis, immunogenesis and morphogenesis of organisms and in the metabolic turnover of complex organic substances. They catalyze the coupling between the four one-electron oxidations of a broad range of substrates with the four-electron reduction of dioxygen to water. These catalytic processes are made possible by the contemporaneous presence of at least four copper ion sites, classified according to their spectroscopic properties: one type 1 (T1) site where the electrons from the reducing substrates are accepted, one type 2 (T2), and a coupled binuclear type 3 pair (T3) which are assembled in a T2/T3 trinuclear cluster where the electrons are transferred to perform the O2 reduction to H2O.  相似文献   

10.
Homolactic fermentation from glucose and cellobiose using Bacillus subtilis   总被引:1,自引:0,他引:1  

Backgroung  

Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilisis a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe) by the FDA. B. subtilisproduces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtiliscould be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilisgrows using cellobiose as substrate.  相似文献   

11.
Biodegradation of petroleum compounds in saline environments seems intricate and needs more attention. In this study, tetracosane was used to enrich alkane-degrading bacteria from oil-contaminated saline soils. Among the isolates, strain Qtet3, with the highest 16s rRNA gene sequence similarity to Alcanivorax dieselolei B-5T, was able to grow at a wide range of NaCl concentrations and was shown by GC analysis to degrade more than 90% of tetracosane in 10 days. This strain has at least two alkB genes and could grow on crude oil and diesel fuel, and utilize various pure aliphatic hydrocarbon substrates (from C12 to C34). Highly hydrophobic cell surfaces and lack of significant surface tension reduction in the media suggest that the main mechanism of the cells for accessing substrate is to attach directly to hydrocarbon particles. Application of this strain for remediating crude oil-contaminated soils irrigated with defined saline water demonstrated that this halotolerant bacterium could survive and grow in saline soils irrigated with NaCl solutions up to 5% w/v, with the highest hydrocarbon degradation of 26.1% observed at 2.5% NaCl. This strain is promising for future industrial applications especially in bioremediation of saline soils and wastes.  相似文献   

12.
A hydrocarbon degrading and biosurfactant producing, strain DHT2, was isolated from oil-contaminated soil. The organism grew and produced biosurfactant when cultured in variety of substrates at salinities up to 6 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, alkanes and PAHs as carbon source across the wide range of temperature (30–45°C) and salinity (0–6%). Over the range evaluated, the salinity and temperature did not influence the degradation of hydrocarbon and biosurfactant productions. Isolate DHT2 was identified as Pseudomonas aeruginosa by analysis of 16S rRNA sequences (100% homology) and biochemical analysis. PCR and DNA hybridization studies revealed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by DHT2 during growth on both, water miscible and immiscible substrates, including PAH. The biosurfactants lowered the surface tension of medium from 54.9 to 30.2 dN/cm and formed a stable emulsion. The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as best substrate and toluene was the poorest. These findings further indicate that the isolate could be useful for bioremediation and bio-refining application in petroleum industry.  相似文献   

13.

Background  

Allosteric coupling, which can be defined as propagation of a perturbation at one region of the protein molecule (such as ligand binding) to distant sites in the same molecule, constitutes the most general mechanism of regulation of protein function. However, unlike molecular details of ligand binding, structural elements involved in allosteric effects are difficult to diagnose. Here, we identified allosteric linkages in the α-subunits of heterotrimeric G proteins, which were evolved to transmit membrane receptor signals by allosteric mechanisms, by using two different approaches that utilize fundamentally different and independent information.  相似文献   

14.

Background  

RNA silencing occurs in a broad range of organisms. Although its ancestral function is probably related to the genome defense mechanism against repetitive selfish elements, it has been found that RNA silencing regulates different cellular processes such as gene expression and chromosomal segregation. In Neurospora crassa, a RNA silencing mechanism, called quelling, acts to repress the expression of transgenes and transposons, but until now no other cellular functions have been shown to be regulated by this mechanism.  相似文献   

15.

Objectives

The aim of this study was to understand the effect of substrate stiffness (a mechanical factor of the extracellular matrix) on periodontal ligament stem cells (PDLSCs) and its underlying mechanism.

Materials and methods

Elastic substrates were fabricated by mixing 2 components, a base and curing agent in proportions of 10:1, 20:1, 30:1 or 40:1. PDLSC morphology was observed using scanning electron microscopy (SEM). Cell proliferation and differentiation were assessed after PDLSCs was cultured on various elastic substrates. Data were analysed using one‐way ANOVA.

Results

SEM revealed variations in the morphology of PDLSCs cultured on elastic substrates. PDLSC proliferation increased with substrate stiffness (P < .05). Osteogenic differentiation of PDLSCs was higher on stiff substrates. Notch pathway markers were up‐regulated in PDLSCs cultured on stiff substrates.

Conclusions

Results suggested that the osteogenic differentiation of PDLSCs might be promoted by culturing them in a stiffness‐dependent manner, which regulates the Notch pathway. This might provide a new method of enhancing osteogenesis in PDLSCs.
  相似文献   

16.

Background  

Metabolic pathway is a highly regulated network consisting of many metabolic reactions involving substrates, enzymes, and products, where substrates can be transformed into products with particular catalytic enzymes. Since experimental determination of the network of substrate-enzyme-product triad (whether the substrate can be transformed into the product with a given enzyme) is both time-consuming and expensive, it would be very useful to develop a computational approach for predicting the network of substrate-enzyme-product triads.  相似文献   

17.

Aims

Bryophyte re‐colonization after disturbance is largely governed by environmental conditions within disturbed forests. In particular, distance to a forest edge is an important predictor of bryophyte community re‐colonization, through either direct constraints, such as dispersal limitation, or indirectly by altering environmental conditions. This study examines a range of factors – environmental, distance to an edge, substrate specific environment or local‐level environment – to determine which are important in the re‐colonization of bryophyte communities after forest harvesting. As bryophyte communities vary with the particular substrate inhabited, responses were examined across four substrates (rock, exposed roots, ground and CWD).

Location

Tasmanian southern forests, Australia.

Methods

Bryophyte composition was examined on four substrates (ground, coarse wood debris, exposed roots, rocks) within three ages (~7, ~27 and ~45 years post‐disturbance) of harvested wet eucalypt forest. Re‐colonization success of bryophyte communities was determined by comparing communities in regeneration forest to mature forest communities using axis scores from one‐dimensional constrained ordination. The importance of various environmental conditions for re‐colonization success was then modelled. Finally, path analysis was used to determine whether the impact of distance to a forest edge was meditated through its effects on key environmental variables.

Results

Multiple environmental factors impacted re‐colonization of mature bryophyte communities. Local‐level conditions such as microclimate (temperature, humidity and VPD) and LAI were the most important in determining re‐colonization across substrates. Path analysis showed that distance to a forest edge had a significant impact on re‐colonization success, but only a relatively small part of this was mediated through its impact on environmental factors.

Conclusions

Bryophyte re‐colonization is driven by a combination of microclimate conditions and factors related to distance from a forest edge (most likely dispersal distance). While some substrate‐specific factors impact bryophyte re‐colonization success, the consistent impact of local environmental factors across substrates suggests that harvesting management strategies that develop more ‘mature’ microclimate conditions and increase proximity to nearby mature forest patches will be beneficial for all bryophytes communities. As bryophyte re‐colonization was correlated with temporally dynamic environmental conditions, we suggest that forest age needs to be considered in future work.  相似文献   

18.

Background

Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates.

Methods

The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes.

Key Results

Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series.

Conclusions

The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.  相似文献   

19.
Rice straw and corn stalks were used as fermentation substrate for the evaluation of cellulases activity secreted by different organisms. The substrates were pretreated with alkaline hydrogen peroxide (AHP) for 6 h at 30 and 60 °C. From the fermentation studies, rice straw and corn stalks substrates showed the highest cellulases activity after 96 h at 60 °C of pre-treatment.  相似文献   

20.

Background  

Protein phosphorylation regulates a multitude of biological processes. However, the large number of protein kinases and their substrates generates an enormously complex phosphoproteome. The cyclin-dependent kinases - the CDKs - comprise a class of enzymes that regulate cell cycle progression and play important roles in tumorigenesis. However, despite intense study, only a limited number of mammalian CDK substrates are known. A comprehensive understanding of CDK function requires the identification of their substrate network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号