首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mandyam K  Jumpponen A 《Mycorrhiza》2008,18(3):145-155
Root colonization by arbuscular mycorrhizae (AM) and dark septate endophytic (DSE) fungi in nitrogen amended and unamended mixed tallgrass prairie communities were analyzed monthly over two growing seasons. Roots were stained with Trypan blue and Sudan IV and fungal structures quantified using the modified magnified intersections method. Root length colonized (RLC) by DSE exceeded AM colonization during early part of the growing season. Fungal colonization varied among the years and was greater in 2003 than in 2002. Seasonal variation among the months within a growing season was observed in 2002 but not in 2003 for both AM and DSE. AM fungi were most abundant during the peak growing season of dominant C4 vegetation while DSE were most abundant during the early part of the growing season. Hyperparasitism of AM hyphal coils by melanized septate fungi was frequently observed and increased with AM coil frequency. Although nitrogen amendment had altered the plant community composition, it had no impact on the colonization by AM or DSE fungi.  相似文献   

2.
田蜜  李敏  刘润进 《菌物学报》2015,34(3):402-409
本研究旨在观察和测定设施栽培黄瓜根系丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)与暗隔内生真菌(dark septate endophytic fungi,DSE)形态结构,明确其发育特征,为进一步探索AMF与DSE相互作用奠定基础。自山东莱阳、寿光和莱西等设施蔬菜主产区选择黄瓜Cucumis sativus样地,从不同连作年限、黄瓜生育期和土层深度分别采集黄瓜根系和根区土壤;观察根内AMF与DSE形态特征、测定AMF和DSE侵染数量、分析AMF或DSE侵染发育数量与黄瓜根结线虫Meloidogyne incognita病害的相关性。从黄瓜根系中可观察到典型的AMF泡囊、疆南星型(Arum,A)与重楼型(Paris,P)丛枝结构、DSE菌丝和微菌核。以黄瓜结果中期根系AMF和DSE侵染率最高,分别为57%和28%,苗期最低,分别为18%和8%;初花期的丛枝为P型,苗期和结果中期则为A型+P型。连作7年和7–10年的黄瓜根内丛枝为A型+P型,AMF和DSE的侵染率均分别显著高于连作10年的侵染率,连作10年的丛枝为A型。黄瓜根系以0–15cm土层中AMF侵染率最高(29%),丛枝为P型;以30cm的侵染率最低(12%),丛枝为A型;15–30cm土层的为A型+P型。AMF P型着生率、P/A比率和DSE侵染率分别与根结线虫病的为害程度具有相关性。研究结果还表明黄瓜根系AMF侵染率与DSE侵染率呈显著正相关关系。  相似文献   

3.
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.  相似文献   

4.
丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用   总被引:2,自引:1,他引:2  
生态修复是目前全球关注的热点问题,如何增加植被的覆盖度及生态修复效率是目前研究的重点。丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)和深色有隔内生真菌(dark septate endophyte,DSE)均是自然界植物根际分布广泛的一类内生真菌,均能与植物形成菌根共生体,具有一定的促进植物生长、抵抗逆境及修复污染土壤等功能与作用,在生态修复中具有广泛的应用潜力。本文综述了AMF及DSE两种微生物的功能、作用及其在生态修复应用中的研究进展,并进一步对AMF和DSE在生态修复中存在的问题和前景进行展望。  相似文献   

5.
贺超  陈晓玉  王文全  侯俊玲 《菌物学报》2020,39(8):1487-1501
为探明西北旱区甘草Glycyrrhiza uralensis根系深色有隔内生真菌(dark septate endophytes,DSE)生态分布和定殖状况,于2018年7月分别从甘肃安西、民勤和宁夏沙坡头地区采集甘草不同灌丛范围0-10cm和20-30cm土壤和根系样品,系统研究不同样地甘草灌丛内外DSE生态分布及其与土壤因子的相关性。结果表明,不同样地甘草均能被DSE高度侵染,形成典型深色有隔菌丝和微菌核结构。不同样地DSE定殖率差异显著,安西DSE总定殖率(43.34%)显著低于民勤(90%)和沙坡头(88.34%)样地。相关性分析表明,DSE定殖率主要与土壤速效磷、有机碳和碱性磷酸酶显著相关。共分离鉴定11属13种DSE,即Acrocalymma vagumAlternaria longissimaAlternaria chlamydosporaAlternaria chlamydosporigenaParaphoma chrysanthemicolaDarksidea alphaNiesslia aemulaTricharina ochroleucaAcremonium nepalenseFusarium solaniPreussia sp.、Leptosphaeria oraemarisUlocladium sp.。其中Acrocalymma vagum是甘草根系DSE优势菌种,为民勤和沙坡头共有种,而安西样地DSE物种多样性最高,共7种。主成分分析表明,安西DSE物种组成在0-10cm和20-30cm不同灌丛范围存在显著差异;单因素方差分析显示,安西和沙坡头DSE菌丝定殖率在距主干0-10cm显著高于20-30cm,说明荒漠环境灌丛覆盖对DSE真菌群落存在显著影响。方差分解结果表明,DSE定殖受样地空间分布、灌丛覆盖和土壤因子共同影响(74.91%),而DSE种类组成更多依赖于样地异质性(84.46%)和土壤养分(87.82%)的作用。研究不同荒漠环境DSE定殖和群落组成差异,有助于充分理解DSE在旱区植物生长和植被恢复中的功能和意义。  相似文献   

6.
Arbuscular mycorrhizal and dark septate endophyte associations of 31 medicinal plant species collected from the Garden of Medicinal Plants of the Faculty of Pharmacy, Jagiellonian University, Collegium Medicum in Kraków were investigated. Arbuscular mycorrhiza (AM) was found in 30 species; 23 were of the Arum-type, 5—Paris and 2 taxa revealed intermediate morphology. Many plants were strongly colonized by arbuscular mycorrhizal fungi (AMF). The mycelium of dark septate endophytes (DSE) was observed in 21 taxa. However, the percentage of root colonization by these fungi was low. Spores of 15 species of AMF (Glomeromycota) were found in the rhizosphere of the investigated plants. Our results are the first detailed report of both AMF and DSE associations of these plant species. The use of AMF and DSE during the process of medicinal plant cultivation for pharmaceutical purposes is discussed.  相似文献   

7.
In this study, carried out in four water bodies in the Upper Paraná River floodplain, we assessed the occurrence of root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF), as well as the AMF species richness associated with 24 species of aquatic macrophytes belonging to different life forms. AMF were found in nine species of macrophytes and DSF in 16 species among the 24 investigated. AM colonization occurred mainly in eudicotiledons (five of the six species evaluated) and the Paris morphology was the most common type. Co-occurrence of AMF and DSF was observed in seven species of macrophytes (Commelinaceae sp. 1, Limnobium laevigatum (H.B.K. ex Willd) Heine, Hygrophila cf. costata, Myriophyllum brasiliense (Camb), Polygonum acuminatum Kunth, P. ferrugineum Wedd and P. stelligerum Cham). Four species of macrophytes (Pistia stratiotes L., Eichhornia crassipes (Mart.) Solms, Egeria najas Planch and Nymphaea amazonum Mart. & Zucc) were not colonized by any type of fungi. In total, 27 morphotypes of AMF were recorded, and spores occurred both in the rhizosphere of macrophytes whose roots were internally colonized by AMF and in non-colonized macrophytes. Acaulospora delicata, Acaulospora aff. laevis, Acaulospora longula, Glomus lamellosum, Glomus luteum and NID 1 (a non-identified species) were the most frequent species. Samples collected close to the roots of N. amazonum had the highest AMF richness (20 species), but this plant was not colonized by fungi. A species richness curve indicated that more root-associated fungi than reported here are likely present in this floodplain.  相似文献   

8.
Fuchs B  Haselwandter K 《Mycorrhiza》2004,14(4):277-281
Since information concerning the mycorrhization of endangered plants is of major importance for their potential re-establishment, we determined the mycorrhizal status of Serratula tinctoria (Asteraceae), Betonica officinalis (Lamiaceae), Drosera intermedia (Droseraceae) and Lycopodiella inundata (Lycopodiaceae), occurring at one of two wetland sites (fen meadow and peat bog), which differed in soil pH and available P levels. Root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was quantified. Colonization by AMF appeared to be more frequent in the fen meadow than in the peat bog, and depended on the host plant. Roots of S. tinctoria and B. officinalis were well colonized by AMF in the fen meadow (35–55% root length) and both arbuscules and vesicles were observed to occur in spring as well as in autumn. In the peat bog, L. inundata showed a low level of root colonization in spring, when vesicles were found frequently but no arbuscules. In roots of D. intermedia from the peat bog, arbuscules and vesicles were observed, but AMF colonization was lower than in L. inundata. In contrast, the amount of AMF spores extracted from soil at the peat bog site was higher than from the fen meadow soil. Spore numbers did not differ between spring and autumn in the fen meadow, but they were higher in spring than in autumn in the peat bog. Acaulospora laevis or A. colossica and Glomus etunicatum were identified amongst the AMF spores extracted from soil at the two sites. S. tinctoria and B. officinalis roots were also regularly colonized by DSE (18–40% root length), while L. inundata was only rarely colonized and D. intermedia did not seem to be colonized by DSE at all.  相似文献   

9.
Arbuscular mycorrhizal and dark septate endophytic fungal colonization in a grassland in Kunming, southwest China, was investigated monthly over one year. All plant roots surveyed were co-colonized by arbuscular mycorrhizal and dark septate endophytic fungi in this grassland. Both arbuscular mycorrhizal and dark septate endophytic fungal colonization fluctuated significantly throughout the year, and their seasonal patterns were different in each plant species. The relationships between environmental (climatic and edaphic) factors and fungal colonization were also studied. Correlation analysis demonstrated that arbuscular mycorrhizal colonization was significantly correlative with environmental factors (rainfall, sunlight hours, soil P, etc.), but dark septate endophytic fungal colonization was only correlative with relative humidity and sunlight hours.  相似文献   

10.
为利用土壤共生真菌资源促进荒漠植被恢复和生态重建, 分别于2013年6月、8月和10月, 从内蒙古元上都地区采集北沙柳(Salix psammophila)根围0-10、10-20、20-30、30-40和40-50 cm共5个土层的土壤样品, 系统研究了丛枝菌根真菌(AMF)和黑隔内生真菌(DSE)的时空分布及其与土壤因子的相关性。结果表明: AMF和DSE的平均定殖率分别为77%和84%, 说明北沙柳根系能与这两类真菌形成良好的共生关系。AMF和DSE的分布和定殖具有明显的时空异质性, 并与土壤因子密切相关。AMF和DSE的平均定殖率均表现为10月> 8月> 6月。土壤深度对AMF和DSE的定殖率有显著影响, AMF和DSE定殖率的最大值分别在0-20 cm和0-10 cm土层。双因子方差分析表明, 月份和土层对AMF和DSE的定殖率以及土壤因子具有显著的交互效应。主成分分析表明, 土壤湿度、pH值、碱性磷酸酶、易提取球囊霉素是内蒙古荒漠环境中AMF和DSE定殖的主要影响因子。  相似文献   

11.
【背景】枸杞是享誉中外的名贵药材,深色有隔内生真菌(Dark septate endophytes,DSE)是枸杞内生真菌的重要组成部分。【目的】从宁夏枸杞栽培品种和野生品种的根系分离获得DSE菌株,研究枸杞DSE的群落组成、物种多样性及在宿主植物内的侵染定殖情况。【方法】从宁夏枸杞栽培园采集栽培品种宁杞1号、宁杞3号、宁杞5号、宁杞6号、宁杞7号、宁杞8号以及野生品种黄果枸杞和黑果枸杞共8个枸杞品种的根系,分离DSE菌株,运用形态学特征、r DNA-ITS序列分析进行菌株鉴定,采用回接试验方法确定DSE真菌。【结果】DSE在枸杞根系能形成大量"微菌核"典型结构。从8个枸杞品种根系中共分离获得DSE菌株279株,分属于18个属,具有丰富的物种多样性。镰刀菌属(Fusarium)为各品种的共有属和优势属,相对频率最高达85%。Monosporascus、蓝状菌属(Talaromyces)和俄氏孔菌属(Earliella)为枸杞内首次报道的DSE。枸杞不同品种中DSE群落物种多样性指数、均匀度指数和Simpson指数差异显著。【结论】DSE在枸杞栽培品种及野生品种中具有丰富的生物多样性,能够与枸杞根系形成良好的共生关系,增强了枸杞对生态环境的适应性。  相似文献   

12.
As an initial step towards evaluating whether mycorrhizas influence composition and diversity in calcareous fen plant communities, we surveyed root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSE) in 67 plant species in three different fens in central New York State (USA). We found colonization by AMF and DSE in most plant species at all three sites, with the type and extent of colonization differing between monocots and dicots. On average, AMF colonization was higher in dicots (58±3%, mean±SE) than in monocots (13±4%) but DSE colonization followed the opposite trend (24±3% in monocots and 9±1% in dicots). In sedges and cattails, two monocot families that are often abundant in fens and other wetlands, AMF colonization was usually very low (<10%) in five species and completely absent in seven others. However, DSE colonization in these species was frequently observed. Responses of wetland plants to AMF and DSE are poorly understood, but in the fen communities surveyed, dicots appear to be in a better position to respond to AMF than many of these more abundant monocots (e.g., sedges and cattails). In contrast, these monocots may be more likely to respond to DSE. Future work directed towards understanding the response of these wetland plants to AMF and DSE should provide insight into the roles these fungal symbionts play in influencing diversity in fen plant communities.  相似文献   

13.
Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi are ubiquitous in grass roots, but their colonizations may vary according to latitudinal gradient and site conditions. We investigated how vegetation zone (boreal vs. subarctic), humus thickness, and site openness affect root fungal colonizations of the grass Avenella flexuosa. More precisely, we hypothesized that AM and DSE fungal colonizations would have different responses to environmental conditions such that AM fungi could be more common in boreal zone, whereas we expected DSE fungi to be more affected by the amount of humus. We found site openness to affect AM and DSE fungi in a contrasting manner, in interaction with the vegetation zone. AM colonization was high at open coastal dunes, whereas DSE fungi were more common at forested sites, in the boreal zone. Humus thickness affected AM fungi negatively and DSE fungi positively. To conclude, the observed AM and DSE fungal colonization patterns were largely contrasting. AM fungi were favored in seashore conditions characterized by thin humus layer, whereas DSE fungi were favored in conditions of higher humus availability.  相似文献   

14.
《菌物学报》2017,(2):164-176
对于野生植物根内定殖的丛枝菌根真菌(AMF)和暗隔内生真菌(DSE)多样性及其生态功能现已进行了众多的调查研究。然而,对于同时定殖于栽培作物同一根系的这两种真菌的物种多样性和功能了解甚少。本研究旨在采用传统的形态学方法和PCR‐DGGE技术探究保护地栽培的黄瓜Cucumis sativus Linn.根内AMF和DSE的物种多样性。PCR‐DGGE结果显示共有7种AMF,包括Funneliformis mosseae,Glomus fasciculatum,Glomus indicum,Scutellospora dipurpurescens,Gigaspora margarita以及2个未培养的Archaeospora;而以黄瓜植株根段作为接种物加富培养后,依据其所产生的孢子形态特征进行分类鉴定,则只分离获得3种,即F.mosseae,G.indicum和Gi.Margarita;同时,采用常规分离纯化的方法从黄瓜根内分离得到DSE 6个菌株,其中1株经分子生物学鉴定为Phoma leveillei。从保护地根区土壤中分离AMF孢子并通过形态学分类鉴定,获得了9属20种。研究结果表明,Glomus是保护地栽培黄瓜根系内的优势属,针对数量,相对于传统形态鉴定技术,分子技术可以检测到根内更多的AMF。  相似文献   

15.
16.
【背景】青枯劳尔氏菌(Ralstonia solanacearum,R.S)引发的姜瘟病是生姜产业发展的瓶颈问题。丛枝菌根真菌(arbuscular mycorrhiza fungi, AMF)与深色有隔内生真菌(dark septate endophytes,DSE)是两类重要的共生微生物。【目的】前期研究发现,AMF与DSE可提高生姜对姜瘟病的抗性,但其抗病机制尚不清楚,极大地限制了利用这两类共生真菌对该病的防治。【方法】在温室条件下做盆栽试验,以生姜组培苗为材料,设立接种AMF、DSE和不接种AMF、DSE的对照(CK)处理,并在上述处理下的植物生长4周后淋入病原菌液,病原菌接种1周后,通过测定菌根侵染率、发病率、叶绿素含量、光合指标、磷(P)含量、防御性酶活性及丙二醛(malondialdehyde, MDA)含量,研究AMF和DSE互作对病原菌侵染后生姜生长和生理生化指标的影响。【结果】AMF和DSE分别使姜瘟病发病率降低了45.27%和52.04%(P<0.05)。AMF+DSE组合处理抑病效果更好,发病率较对照降低60.87%(P<0.05)。AMF、DSE及...  相似文献   

17.
为探明细枝岩黄耆Hedysarum scoparium根系丛枝菌根真菌(arbuscular mycorrhizae,AM)和深色有隔内生真菌(dark septate endophytes,DSE)定殖特征及其生态地理分布,充分理解菌根共生体在植物生长和植被恢复中的功能,本研究连续3年采集我国西北荒漠带不同样地细枝岩黄耆0-30cm土层土壤样品和根样,不同样地细枝岩黄耆均能被AM和DSE侵染,形成AM典型结构菌丝、泡囊和丛枝,DSE典型结构深色有隔菌丝和微菌核。细枝岩黄耆根系AM真菌定殖高于DSE定殖,但极端干旱条件下DSE定殖优于AM真菌定殖。AM真菌定殖率不同年际间表现为2016年最高,同一年份不同样地,除乌海、沙坡头样地,菌丝定殖率自东向西呈降低趋势。DSE真菌定殖率,在同一样地不同年份:乌海样地2016年定殖率显著高于2015年和2017年,在同一年份不同样地:2015年沙坡头样地DSE菌丝定殖率、总定殖率显著高于其他样地,而2016、2017年鄂尔多斯样地最高。NMDS分析结果显示,AM和DSE真菌定殖不同年际间差异显著。相关性分析表明,AM真菌定殖率与DSE定殖率显著正相关;土壤温度与AM定殖显著负相关;有机碳、速效磷、磷酸酶、湿度与AM定殖显著正相关;DSE菌丝定殖率、定殖强度仅与酸性磷酸酶正相关。本研究比较分析西北荒漠带不同样地AM和DSE定殖与土壤因子的相关性,有助于充分理解菌根共生体在植物生长和植被恢复中的功能和意义。  相似文献   

18.
Knapp DG  Pintye A  Kovács GM 《PloS one》2012,7(2):e32570
Dark septate endophytic (DSE) fungi represent a frequent root-colonizing fungal group common in environments with strong abiotic stress, such as (semi)arid ecosystems. This work aimed to study the DSE fungi colonizing the plants of semiarid sandy grasslands with wood steppe patches on the Great Hungarian Plain. As we may assume that fungi colonizing both invasive and native species are generalists, root associated fungi (RAF) were isolated from eight native and three invasive plant species. The nrDNA sequences of the isolates were used for identification. To confirm that the fungi were endophytes an artificial inoculation system was used to test the isolates: we considered a fungus as DSE if it colonized the roots without causing a negative effect on the plant and formed microsclerotia in the roots. According to the analyses of the ITS sequence of nrDNA the 296 isolates clustered into 41 groups. We found that 14 of these 41 groups were DSE, representing approximately 60% of the isolates. The main DSE groups were generalist and showed no specificity to area or season and colonized both native and invasive species, demonstrating that exotic plants are capable of using the root endophytic fungi of the invaded areas. The DSE community of the region shows high similarity to those found in arid grasslands of North America. Taking into account a previous hypothesis about the common root colonizers of those grasslands and our results reported here, we hypothesize that plants of (semi)arid grasslands share common dominant members of the DSE fungal community on a global scale.  相似文献   

19.
尚晓静  张富美  李思  侯瑞 《菌物学报》2021,40(10):2752-2770
为探明贵州省栽培笃斯越橘根系深色有隔内生真菌(dark septate endophytes,DSE)、丛枝菌根(arbuscular mycorrhiza,AM)真菌与欧石南菌根(ericoid mycorrhiza,ERM)真菌的定殖及地理分布情况,揭示共生真菌在栽培笃斯越橘生长中的地位,本研究在贵州省笃斯越橘主栽区麻江县、凤岗县和高坡乡分别选取主栽品种圆蓝、粉蓝、奥尼尔和莱格西的根样及根围土样,观测不同地区不同品种根样DSE真菌、AM真菌和ERM真菌的定殖结构和定殖率,并测定土样土壤理化性质,分析不同真菌与土壤因子相关性。结果表明,3个地区的4个笃斯越橘品种均有DSE真菌、AM真菌和ERM真菌定殖,栽培笃斯越橘能与3类真菌形成共生关系,平均定殖率分别为61.11%、25.55%和22.50%。DSE真菌定殖率:高坡(62.50%)>麻江(61.66%)>凤岗(59.16%);AM真菌定殖率:凤岗(34.14%)>麻江(25.83%)>高坡(16.66%);ERM真菌定殖率:高坡(35.00%)>凤岗(20.00%)>麻江(12.5%)。相关性分析表明,DSE真菌中的菌丝与微菌核的定殖率呈负相关,AM真菌的总定殖率及定殖强度与微菌核的定殖率呈极显著正相关,与DSE真菌菌丝的定殖率呈负相关。ERM真菌总定殖率与DSE真菌菌丝的定殖率及AM真菌定殖强度呈极显著正相关,与DSE真菌总定殖率呈显著正相关。土壤有效磷与DSE真菌和ERM真菌总定殖率呈显著正相关,与AM真菌定殖率呈显著负相关。土壤铵态氮与DSE真菌中微菌核结构定殖率及AM真菌定殖率呈极显著正相关,与ERM真菌定殖率呈极显著负相关。土壤pH值与DSE定殖强度呈显著负相关,与ERM定殖强度呈极显著正相关。本研究分析比较贵州省3个笃斯越橘种植基地不同品种栽培笃斯越橘DSE真菌、AM真菌和ERM真菌的定殖及其与土壤理化性质之间的相关性,为贵州省栽培笃斯越橘的管理和发展提供技术基础和理论依据。  相似文献   

20.
Although roots of species in the Pinaceae are usually colonized by ectomycorrhizal (EM) fungi, there are increasing reports of the presence of arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi in these species. The objective of this study was to determine the colonization patterns in seedlings of three Pinus (pine) species (Pinus banksiana, Pinus strobus, Pinus contorta) and Picea glauca x Picea engelmannii (hybrid spruce) grown in soil collected from a disturbed forest site. Seedlings of all three pine species and hybrid spruce became colonized by EM, AM, and DSE fungi. The dominant EM morphotype belonged to the E-strain category; limited colonization by a Tuber sp. was found on roots of Pinus strobus and an unknown morphotype (cf. SuillusRhizopogon group) with thick, cottony white mycelium was present on short roots of all species. The three fungal categories tended to occupy different niches in a single root system. No correlation was found between the percent root colonized by EM and percent colonization by either AM or DSE, although there was a positive correlation between percent root length colonized by AM and DSE. Hyphae and vesicles were the only AM intracellular structures found in roots of all species; arbuscules were not observed in any roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号