首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of the 60-S ribosomal subunit in yeast   总被引:1,自引:0,他引:1  
  相似文献   

2.
Malygin AA  Karpova GG 《FEBS letters》2010,584(21):4396-4400
After resolving the crystal structure of the prokaryotic ribosome, mapping the proteins in the eukaryotic ribosome is a challenging task. We applied RNase H digestion to split the human 40S ribosomal subunit into head and body parts. Mass spectrometry of the proteins in the 40S subunit head revealed the presence of eukaryote-specific ribosomal protein S28e. Recombinant S28e was capable of specific binding to the 3′ major domain of the 18S rRNA (Ka = 8.0 ± 0.5 × 109 M−1). We conclude that S28e has a binding site on the 18S rRNA within the 40S subunit head.

Structured summary

MINT-8044084: S8 (uniprotkb:P62241) and S19 (uniprotkb:P39019) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044095: S8 (uniprotkb:P62241), S19 (uniprotkb:P39019) and S13 (uniprotkb:P62277) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044024: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S21 (uniprotkb:P63220), S20 (uniprotkb:P60866), S26 (uniprotkb:P62854), S25 (uniprotkb:P62851), S12 (uniprotkb:P25398), S17 (uniprotkb:P08708), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263), S16 (uniprotkb:P62249) and S11 (uniprotkb:P62280) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044065: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263) and S16 (uniprotkb:P62249) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)  相似文献   

3.
Homeodomain proteins are a highly conserved class of DNA-binding proteins that are found in virtually every eukaryotic organism. The conserved mechanism that these proteins use to bind DNA suggests that there may be at least a partial DNA recognition code for this class of proteins. To test this idea, we have investigated the sequence-specific requirements for DNA binding and repression by the yeast alpha2 homeodomain protein in association with its cofactors, Mcm1 and Mata1. We have determined the contribution for each residue in the alpha2 homeodomain that contacts the DNA in the co-crystal structures of the protein. We have also engineered mutants in the alpha2 homeodomain to alter the DNA-binding specificity of the protein. Although we were unable to change the specificity of alpha2 by making substitutions at residues 47, 54, and 55, we were able to alter the DNA-binding specificity by making substitutions at residue 50 in the homeodomain. Since other homeodomain proteins show similar changes in specificity with substitutions at residue 50, this suggests that there is at least a partial DNA recognition code at this position.  相似文献   

4.
Summary The ribosomal protein patterns of recessive suppressor strain and parent strain of Saccharomyces cerevisiae were analyzed by two-dimensional polyacrylamide gel electrophoresis. About 30 protein spots were found for ribosomal proteins of small subunit for both mutant and parent strain. These patterns do not differ from each other neither in intensity of staining, nor in mobility of spots. 41 protein spots were found in electrophoregrams of 60S ribosomal proteins both from parent strain and recessive suppressor strain. The electrophoretic picture of the 60S proteins from the parent and mutant strains is similar except the intensity of staining of the L30 spot. This protein is present in 60S subunit of suppressor strain and completely absent or only weakly stained on electrophoregrams of ribosomal proteins of parent strain. The possible relationships between the content of L30 protein and the mechanism of recessive suppression in yeast are discussed.  相似文献   

5.
We have conducted a genetic screen in order to identify ribosomal proteins of Saccharomyces cerevisiae involved in nuclear export of the small subunit precursors. This has led us to distinguish Rps15p as a protein dispensable for maturation of the pre-40S particles, but whose assembly into the pre-ribosomes is a prerequisite to their nuclear exit. Upon depletion of Rps15p, 20S pre-rRNA is released from the nucleolus and retained in the nucleus, without alteration of the pre-rRNA early cleavages. In contrast, Rps18p, which contacts Rps15p in the small subunit, is required upstream for pre-rRNA processing at site A2. Most pre-40S specific factors are correctly associated with the intermediate particles accumulating in the nucleus upon Rps15p depletion, except the late-binding proteins Tsr1p and Rio2p. Here we show that these two proteins are dispensable for nuclear exit; instead, they participate in 20S pre-rRNA processing in the cytoplasm. We conclude that, during the final maturation steps in the nucleus, incorporation of the ribosomal protein Rps15p is specifically required to render the pre-40S particles competent for translocation to the cytoplasm.  相似文献   

6.
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.  相似文献   

7.
1. Autodegradation of yeast ribosomes is due to a 'latent' ribonuclease which is associated with the 40 S ribosomal subunit. 2. The ribonuclease was extracted in the presence of EDTA from ribosomes and purified 118-rold by protamine sulphate precipitation, (NH4)2SO4 fractionation and chromatography on DEAE-cellulose. 3. The optimum pH for this enzyme is 5 to 6.5 while the optimum temperature is 45 to 50 degrees C. Incubation for 10 min at 60 degrees C caused a reduction in enzyme activity of 70%. 4. The ribonuclease has an endonucleolytic activity against rRNA, tRNA, poly(A), poly(U) and poly(C) but does not degrade poly(G) or DNA. It hydrolyzes the homopolymers to nucleoside 3'-phosphates. 5. Zn2+, Mn2+, heparin, glutathione and p-chloromercuribenzoate inhibit the ribonuclease, while Na+, K+, EDTA and sermidine have only little or no effect. 6. It binds tightly to yeast ribosomes but only loosely to ribonuclease-free wheat germ ribosomes. 7. Polyribosomes possess less autodegradation activity than monoribosomes, isolated from the same homogenate.  相似文献   

8.
We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation of Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes.  相似文献   

9.
10.
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit.  相似文献   

11.
Diazaborine treatment of yeast cells was shown previously to cause accumulation of aberrant, 3'-elongated mRNAs. Here we demonstrate that the drug inhibits maturation of rRNAs for the large ribosomal subunit. Pulse-chase analyses showed that the processing of the 27S pre-rRNA to consecutive species was blocked in the drug-treated wild-type strain. The steady-state level of the 7S pre-rRNA was clearly reduced after short-term treatment with the inhibitor. At the same time an increase of the 35S pre-rRNA was observed. Longer incubation with the inhibitor resulted in a decrease of the 27S precursor. Primer extension assays showed that an early step in 27S pre-rRNA processing is inhibited, which results in an accumulation of the 27SA2 pre-rRNA and a strong decrease of the 27SA3, 27SB1L, and 27SB1S precursors. The rRNA processing pattern observed after diazaborine treatment resembles that reported after depletion of the RNA binding protein Nop4p/Nop77p. This protein is essential for correct pre-27S rRNA processing. Using a green fluorescent protein-Nop4 fusion, we found that diazaborine treatment causes, within minutes, a rapid redistribution of the protein from the nucleolus to the periphery of the nucleus, which provides a possible explanation for the effect of diazaborine on rRNA processing.  相似文献   

12.
We have determined the N-termini of 26 proteins of the large ribosomal subunit from yeast mitochondria by direct amino acid micro-sequencing. The N-terminal sequences of proteins YmL33 and YmL38 showed a significant similarity to eubacterial ribosomal (r-) proteins L30 and L14, respectively. In addition, several proteins could be assigned to their corresponding yeast nuclear genes. Based on a comparison of the protein sequences deduced from the corresponding DNA regions with the N-termini of the mature proteins, the putative leader peptides responsible for mitochondrial matrix-targeting were compiled. In most leader sequences a relative abundance of aromatic amino acids, preferentially phenylalanine, was found.  相似文献   

13.
Two distinct, cyclic AMP-independent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from yeast have been isolated and highly purified. The first of the enzymes, protein kinase 1 A, phosphorylates casein and phosvitin, and its cellular protein substrate is unknown. The second enzyme, protein kinase 1 B, phosphorylates two strongly acidic proteins, L44 and L45, of the 60 S ribosomal subunit.  相似文献   

14.
M S Davies  A Henney  W H Ward  R K Craig 《Gene》1986,45(2):183-191
We describe the isolation and characterisation of a full-length cDNA sequence (pZH-21) of a human ribosomal protein (rp) mRNA isolated from a cDNA library constructed from the human ZR-75-1 mammary tumour cell-line. The predicted protein is highly basic and shows 72% homology at the amino acid (aa) level with yeast rp L44. Comparative RNA blotting of ZR-75-1 poly(A)+ RNA isolated from cells cultured in the presence of the anti-oestrogen tamoxifen demonstrates the presence of a number of mRNA species whose concentration is elevated co-ordinately 5-6-fold in the presence of 17beta-oestradiol. Insulin in the presence of tamoxifen, also enhanced rp mRNA levels suggesting increased levels are a reflection of cell proliferation as opposed to specific hormonal regulation. Genomic analysis demonstrates the presence of a family of related human sequences, and homology with rat and guinea pig rp genes, but not yeast DNA. The conservation of rp aa sequence, in the absence of detectable homology at the nucleotide (nt) level, points to an important common functional role of the L44 protein in ribosome structure and function in man and yeast.  相似文献   

15.
Structural comparison of yeast ribosomal protein genes.   总被引:12,自引:19,他引:12       下载免费PDF全文
The primary structure of the genes encoding the yeast ribosomal proteins L17a and L25 was determined, as well as the positions of the 5'- and 3'-termini of the corresponding mRNAs. Comparison of the gene sequences to those obtained for various other yeast ribosomal protein genes revealed several similarities. In all split genes the intron is located near the 5'-side of the amino acid coding region. Among the introns a clear pattern of sequence conservation can be observed. In particular the intron-exon boundaries and a region close to the 3'-splice site show sequence homology. Conserved sequences were also found in the leader and trailer regions of the ribosomal protein mRNAs. The 5'-flanking regions of the yeast ribosomal protein genes appeared to contain sequence elements that many but not all ribosomal protein genes have in common, and therefore may be implicated in the coordinate expression of these genes. The amino acid coding sequences of the ribosomal protein genes show a biased codon usage. Like most yeast ribosomal protein molecules, L17a and L25 are particularly basic at their N-terminus.  相似文献   

16.
17.
Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast   总被引:2,自引:1,他引:1  
We previously showed that nuclear export of the large (60S) ribosomal subunit relies on Nmd3 in a Crm1-dependent manner. Recently the general mRNA export factor, the Mtr2/Mex67 heterodimer, was shown to act as an export receptor in parallel with Crm1. These observations raise the possibility that nuclear export of the 60S subunit in Saccharomyces cerevisiae requires multiple export receptors. Here, we show that the previously characterized 60S subunit biogenesis factor, Arx1, also acts as an export receptor for the 60S subunit. We found that deletion of ARX1 was synthetic lethal with nmd3 and mtr2 mutants and was synthetic sick with several nucleoporin mutants. Deletion of ARX1 led to accumulation of pre-60S particles in the nucleus that were enriched for Nmd3, Crm1, Mex67, and Mtr2, suggesting that in the absence of Arx1, 60S export is impaired even though the subunit is loaded with export receptors. Finally, Arx1 interacted with several nucleoporins in yeast two-hybrid as well as in vitro assays. These results show that Arx1 can directly bridge the interaction between the pre-60S particle and the NPC and thus is a third export receptor for the 60S subunit in yeast.  相似文献   

18.
Yeast ribosomal protein L11 is positioned at the intersubunit cleft of the large subunit central protuberance, forming an intersubunit bridge with the small subunit protein S18. Mutants were engineered in the central core region of L11 which interacts with Helix 84 of the 25S rRNA. Numerous mutants in this region conferred 60S subunit biogenesis defects. Specifically, many mutations of F96 and the A66D mutant promoted formation of halfmers as assayed by sucrose density ultracentrifugation. Halfmer formation was not due to deficiency in 60S subunit production, suggesting that the mutants affected subunit-joining. Chemical modification analyses indicated that the A66D mutant, but not the F96 mutants, promoted changes in 25S rRNA structure, suggesting at least two modalities for subunit joining defects. 25S rRNA structural changes were located both adjacent to A66D (in H84), and more distant (in H96-7). While none of the mutants significantly affected ribosome/tRNA binding constants, they did have strong effects on cellular growth at both high and low temperatures, in the presence of translational inhibitors, and promoted changes in translational fidelity. Two distinct mechanisms are proposed by which L11 mutants may affect subunit joining, and identification of the amino acids associated with each of these processes are presented. These findings may have implications for our understanding of multifaceted diseases such as Diamond–Blackfan anemia which have been linked in part with mutations in L11.  相似文献   

19.
20.
Discoordinate expression of the yeast mitochondrial ribosomal protein MRP1   总被引:6,自引:0,他引:6  
We have examined expression of the protein coded within the MRP 1 locus of Saccharomyces cerevisiae. Direct evidence is provided for the assignment of the MRP1 gene product as a protein component of the small subunit of mitochondrial ribosomes. Further studies examined the extent to which the expression of the MRP1 protein is coordinated with the expression of other mitochondrial ribosomal components coded in the nuclear and mitochondrial genomes. Extra copies of the MRP1 gene were introduced into yeast cells to perturb expression from MRP1 relative to other mitochondrial ribosomal components to determine whether forms of regulation function to limit the accumulation of either MRP1 mRNA or protein under these conditions. Increases in MRP1 gene dosage were accompanied by substantial increases in both MRP1 mRNA and protein, indicating that their accumulation was not linked to the level of expression of other mitochondrial ribosomal components. This conclusion was confirmed by additional studies that showed that the accumulation of the MRP1 protein was unaffected in cells that did not express mitochondrially-encoded rRNAs. These results contrast with previous studies on the expression of two other mitochondrial ribosomal proteins indicating that regulatory properties of mitochondrial ribosomal proteins are quite diverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号