首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using natural lipoproteins as substrates, lipase activity has been measured in leg muscle, fat body, midgut and flight muscles of Locusta migratoria. The enzymic activity in the flight muscles is higher than in those other tissues tested, confirming the potential of the flight muscles to utilise lipids at high rates. In addition, a membrane-bound lipoprotein lipase can be extracted from flight muscle. The flight muscle enzyme activity shows a marked substrate specificity; at lipoprotein concentrations equivalent to those found normally in flown or resting locusts respectively, the enzyme hydrolyses diacylglycerols associated with lipoprotein A+ (present in the haemolymph of flown or adipokinetic hormone-injected locusts) at about 4 times the rate of those associated with lipoprotein Ayellow (which is the major lipoprotein in resting locusts). In addition, the hydrolysis of lipids carried by lipoprotein Ayellow is dramatically reduced in the presence of lipoprotein A+. These observations indicate that the enzyme plays a specific role in the uptake of lipids at the flight muscles to ensure a smooth transition from carbohydrate to lipid based metabolism during flight.  相似文献   

2.
《Insect Biochemistry》1986,16(3):517-523
Lipoprotein lipase activity in flight muscle homogenates of Locusta migratoria was measured, using natural radiolabelled lipoproteins as substrates. The flight specific lipoprotein A+ (or low density lipophorin) stimulated lipoprotein lipase activity several-fold compared to the resting lipoprotein Ay (or high density lipophorin). However, with the high mol. wt lipoprotein fraction OAKH as a substrate, lipase activity was even doubled compared to lipoprotein A+. Lipase activity was not increased in flight muscle homogenates of insects which had flown. Neither adipokinetic hormone, nor octopamine had any direct effect on lipoprotein lipase activity. Aspects of hormonal regulation and apoprotein activation of the locust flight muscle lipoprotein lipase are discussed and compared with the model for vertebrate lipoprotein lipase.  相似文献   

3.
Evidence from chromatographic and heparin precipitation studies shows that the ‘heparin-soluble’ lipoprotein, A+, forms in the haemolymph during flight. In locusts flown continuously for 60 min, lipoprotein A+ occurs in the haemolymph at low concentrations but accumulates during a short rest period following flight. After injections of tissue extracts containing adipokinetic hormone (AKH), A+ accumulates in the haemolymph but disappears more rapidly in flying locusts than in resting locusts. This difference in the rate of disappearance of diacylglycerol from the lipoprotein A+ can be used to estimate its rate of utilization during sustained flight (approx. 100μg. min?1 from 45–90 min of flight). It is suggested that lipoprotein A+ is the major carrier of diacylglycerol from the fat body to the flight muscles during prolonged flight. The steady state concentrations of total diacylglycerol and ‘heparin-soluble’ diacylglycerol during continuous flight are unaffected when tissue extracts containing AKH are injected before flight. This suggests that there is a close homeostatic control over the steady state concentration of haemolymph lipid during flight.  相似文献   

4.
The activity of lipoprotein lipase was measured in white and brown adipose tissues, red vastus lateralis muscle, and heart of rats that have been insulin deficient (streptozotocin, 75 mg.kg-1) for 2 weeks, and that have then received implants of insulin-delivering minipumps (17 U.kg-1.day-1) for 1 or 4 days. Normal glycemia was restored in insulin-deficient animals after 4 days of insulin treatment. Hypertriglyceridemia, but not hypercholesterolemia, was reversed after 4 days of insulin infusion. After 2 weeks of insulin deficiency, fasting lipoprotein lipase activity was lowered in all tissues studied. In white adipose tissue, lipoprotein lipase decreased to 50% of control values. After a single day of insulin infusion, even if tissue weight has not yet been greatly affected, total activity was completely restored to control levels. Enzyme activity in brown adipose tissue was also depressed in deficient animals, and insulin infusion was followed by a slow recovery of activity, to a level intermediate between those of control and insulin-deficient groups. Insulin status had milder effects on lipoprotein lipase activity in vastus lateralis muscle than in the adipose tissues. Deficient rats displayed 60% less activity than controls, and 4 days of hormone infusion only partially restored enzyme activity. There was a large loss of lipoprotein lipase in the heart following 2 weeks of insulin depletion, which was not counteracted by hormone infusion. Thus the speed and extent of recovery of lipoprotein lipase activity following hormone replacement in insulin-deficient animals varied widely among tissues. These findings suggest that insulin is part of the factors that determine the tissue specificity of lipoprotein lipase regulation.  相似文献   

5.
After ovariectomy the concentrations of diacylglycerol and protein in the haemolymph increase markedly. The increased diacylglycerol is associated with increased quantities of the ‘heparin-precipitable’ protein (lipoprotein A) that carries diacylglycerol in the blood of normal resting locusts. After the injection of adipokinetic hormone (AKH), the blood of ovariectomized locusts contains only slight quantities of the ‘heparin-soluble’ lipoprotein A+ whereas this forms in large amounts in the blood of sham-operated locusts after AKH injection. After allatectomy, the increase in the adipokinetic response is slower and the full level of responsiveness observed in sham-operated locusts is never attained. Nevertheless, allatectomized locusts develop a marked adipokinetic response which tends to stabilize as they age; it does not deteriorate as it does in aged sham-operated locusts.The effects of ovariectomy on blood metabolites can be prevented completely by allatectomy, but only partially by cautery of the cerebral neurosecretory cells. Treatment with a juvenile hormone analogue (JHA R-20458) counteracts the effects of allatectomy in ovariectomized locusts.  相似文献   

6.
Rabbit antiserum was prepared against purified bovine mild lipoprotein lipase. Immunoelectrophoresis of lipoprotein lipase gave a single precipitin line against the antibody which was coincident with enzyme activity. The gamma-globulin fraction inhibited heparin-releasable lipoprotein lipase activity of bovine arterial intima, heart muscle and adipose tissue. The antibody also inhibited the lipoprotein lipase activity from adipose tissue of human and pig, but not that of rat and dog. Fab fragments were prepared by papain digestion of the gamma-globulin fraction. Fab fragments inhibited the lipoprotein lipase-catalyzed hydrolysis of dimyristoylphosphatidylcholine vesicles and trioleoylglycerol emulsions to the same extent. The Fab fragments also inhibited the lipolysis of human plasma very low density lipoproteins. The change of the kinetic parameters for the lipoprotein lipase-catalyzed hydrolysis of trioleoylglycerol by the Fab fragments was accompanied with a 3-fold increase in Km and a 10-fold decrease in Vmax. Preincubation of lipoprotein lipase with apolipoprotein C-II, the activator protein for lipoprotein lipase, did not prevent inhibition of enzyme activity by the Fab fragments. However, preincubation with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol or Triton X-100-emulsified trioleoylglycerol had a protective effect (remaining activity 7.0 or 25.8%, respectively, compared to 1.0 or 0.4% with no preincubation). The addition of both apolipoprotein C-II and substrate prior to the incubation with the Fab fragments was associated with an increased protective effect against inhibition of enzyme activity; remaining activity with dipalmitoylphosphatidylcholine-emulsified trioleoylglycerol was 40.6% and with Triton X-100-emulsified trioleoylglycerol, 45.4%. Human plasma very low density lipoproteins also protected against the inhibition of enzyme activity by the Fab fragments. These immunological studies suggest that the interaction of lipoprotein lipase with apolipoprotein C-II in the presence of lipids is associated with a conformational change in the structure of the enzyme such that the Fab fragments are less inhibitory. The consequence of a conformational change in lipoprotein lipase may be to facilitate the formation of an enzyme-triacylglycerol complex so as to enhance the rate of the lipoprotein lipase-catalyzed turnover of substrate to products.  相似文献   

7.
8.
R Rauramaa 《Medical biology》1982,60(3):139-143
The effect of acute physical exercise on skeletal muscle glycogen content and on lipoprotein lipase activity of muscle, adipose and lung tissues was studied in streptozotocin diabetic and control rats. Rats were accustomed to treadmill running for two weeks after streptozotocin treatment. For an exercise bout of moderate intensity rats were randomly divided into two groups: one was sacrificed immediately after exercise and the other 24 hours afterwards. In addition there was a nonexercised sedentary group. No depletion of glycogen was observed after exercise in the vastus lateralis muscle of control (nondiabetic) rats. No difference in glycogen utilization was found in soleus muscle between diabetic and control rats. In diabetic rats a slight decrease occurred in the lipoprotein lipase activity in adipose tissue immediately after exercise, while in control rats there was a significant decline 24 hours after exercise. In soleus muscle a slight but significant increase of lipoprotein lipase activity occurred 24 hours after exercise in diabetic rats but not in control rats. The results suggest that nonketotic streptozotocin diabetes of short duration does not influence muscle glycogen in the resting state, but glycogen utilization is disturbed in white muscle during moderate treadmill running in untrained diabetic rats. The increase in lipoprotein lipase activity after physical exercise in red muscle of diabetic rats occurs during the recovery phase.  相似文献   

9.
Fractionation of methanolic extracts of haemolymph on Sephadex LH-20 made possible the measurement of the titre of adipokinetic hormone in the haemolymph of locusts. Experimentally produced high concentrations of haemolymph carbohydrate caused a delay in the mobilization of lipid during flight, and very low titres of the hormone were present in the haemolymph of locusts injected with trehalose immediately before a 25 min flight. In these locusts flight speed was higher than saline-injected controls. Although delayed lipid mobilization during flight was also seen in locusts injected with sucrose, sucrose is not utilized for flight metabolism and flight speed was not increased by the injection. Tentative estimates of the release rate (c. 1000pg/20min flight) and half life (c. 20 min) of adipokinetic hormone during flight are made. The results described suggest that during flight the rate at which trehalose disappears from the haemolymph does not play a major role in the initiation of the release of adipokinetic hormone.  相似文献   

10.
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacylglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locust flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP ofLocusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for longchain fatty acids (apparent dissociation constant Kd=5.21±0.16 M) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity. Although considerable circumstantial evidence would support a function of locust flight muscle FABP in intracellular uptake and transport of fatty acids, the finding of another extremely well-flying migratory insect, the hawkmothAcherontia atropos, which employs the same lipoprotein shuttle system, however contains relatively very low amounts of FABP in its flight muscles, renders the proposed function of FABP in insect flight muscles questionable.  相似文献   

11.
Lipase activity extracted from cultured neonatal rat heart cells was characterized and identified as lipoprotein lipase. Enzyme activity was stimulated by human apoC-II and rat serum; serum stimulation was prevented by human apoC-I and by apoC-II. Lipolysis was maximal at pH 8.0 and was inhibited by protamine sulfate, NaCl, and high concentrations of heparin. About 50% of heart cell lipase activity applied to heparin-Sepharose bound to the gel and was eluted with a NaCl gradient. A peak of lipase activity was observed at 0.84 M NaCl. Neonatal rat heart cells in culture are a mixture of muscle and non-muscle cells. To determine the cellular location of the lipoprotein lipase, enzyme activity and muscle cell content of the cultures were determined. Myosin ATPase was used as an index of muscle cell content since ATPase specific activity correlated (r = +0.97) with muscle cell content determined immunofluorescently. When muscle cell content of cultures was decreased or increased by differential plating, lipase specific activity was constant. Moreover, lipase specific activity was constant during culture growth despite a decrease in muscle cell content. It was concluded that lipoprotein lipase activity of cultured heart cells is not associated solely with either muscle or non-muslce cells.  相似文献   

12.
The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase   总被引:2,自引:0,他引:2  
Free fat cells and stromal-vascular cells were prepared from rat adipose tissue by incubation with collagenase. NH(4)OH-NH(4)Cl extracts of acetone-ether powders prepared from fat cells contained lipoprotein lipase activity but extracts of stromal-vascular cells did not. Intact fat cells released lipoprotein lipase activity into incubation medium, but intact stromal-vascular cells did not. The lipoprotein lipase activity of the medium was increased when fat cells were incubated with heparin, and this was accompanied by a corresponding decrease in the activity of subsequently prepared fat cell extracts. Heparin did not release lipoprotein lipase activity from stromal-vascular cells. The lipoprotein lipase activity of NH(4)OH-NH(4)Cl extracts of fat cell acetone powders is increased by the presence of heparin during the assay. This increase is not due to preservation of enzyme activity, but to increased binding of lipoprotein lipase to chylomicrons. Protamine sulfate and sodium chloride have little effect on the binding of lipoprotein lipase to chylomicrons, but they inhibit enzyme activity after binding to substrate has occurred. These inhibitors do, however, inhibit the stimulatory effect of heparin on enzyme-substrate binding.  相似文献   

13.
Abstract. Flight fuel relations of crowded and isolated Locusta migratoria migratorioides were investigated in younger (12–16 days after fledging) and older (27–30 or 27–32 days after fledging) adult males.No phase polymorphism dependent differences were found in resting haemolymph carbohydrate levels of the younger locusts.In the older age group, resting haemolymph carbohydrate levels were slightly though significantly higher in the isolated than in the crowded locusts.Injection of various doses of synthetic adipokinetic hormones (AKHs) did not induce marked changes in haemolymph carbohydrate levels and no differences were found between crowded and isolated locusts.A 30 min flight led to the same decrease in haemolymph carbohydrate levels of isolated and crowded locusts, 43.3% and 44.6% of the resting levels, respectively.We concluded, therefore, that the results do not seem to indicate that isolated locusts rely more heavily on carbohydrates as flight fuel than crowded locusts.Hyperlipaemic responses to flight were less intense in isolated than in crowded locusts, but phase polymorphism dependent differences in flight-induced increase of haemolymph lipid levels were not parallel in 12–16-day-old and 27–32-day-old males.In the younger age group the difference was mainly in the duration of flight needed to induce full response which appeared already after 20 min of flight in the crowded locusts, but only after 45 or 60 min of flight in the isolated ones.In contrast, the older isolated locusts showed markedly lower haemolymph lipid elevations than the crowded locusts even after 30, 45 or 60 min of flight.The hypothesis is forwarded that isolated locusts have a rather coarse adipokinetic strategy focused on a single long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative migratory flights and saving fuel reserves for unpredictable long-distance migrations.  相似文献   

14.
Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase-dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.  相似文献   

15.
The site of cartilage matrix degradation.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. The metabolism of VLD lipoproteins (very-low-density lipoproteins) was studied in intact isolated beating-heart cells and isolated perfused rat heart from starved animals by using [14C]triacylglycerol fatty acid-labelled VLD lipoprotein prepared from rats previously injected with [1-14C]palmitate. 2. 14C-labelled VLD lipoprotein was metabolized by the isolated perfused heart, but was only minimally metabolized by the heart cells unless an exogenous source of lipoprotein lipase was added. 3. Measurements of lipoprotein lipase at pH 7.4 with the natural substrate 14C-labelled VLD lipoprotein indicated that during collagenase perfusion of the heart the enzyme was released into the perfusate, the activity released being proportional to the concentration of collagenase used. Lipoprotein lipase activity in homogenates of hearts that had been perfused with collagenase showed a corresponding loss of activity. 4. At high perfusate concentrations of collagenase, inactivation of the released lipoprotein lipase occurred. 5. Lipoprotein lipase activity was largely undetectable in the homogenate of the isolated heart cells. 6. It is concluded that the lipoprotein lipase responsible for the hydrolysis of VLD lipoprotein triacylglycerol is predominantly located externally to the heart muscle cells and that its release can be facilitated by perfusion of the heart with bacterial collagenase.  相似文献   

16.
The activity of lipoprotein lipase isolated from rat postheparin plasma has been determined with synthetic lipids, in the presence and absence of apoprotein of the natural substrate very low density lipoprotein, as a function of medium ion-pair concentration of a number of different inorganic salts. The several kinetic effects of lipoprotein protein on lipase activity were specifically and quantitatively reversed in the presence of molar sodium chloride or solutions of equivalent effective ion concentrations of other salts. Salt-mediated inhibition was fully reversible by silution and was independent of substrate concentration. Inhibition was a function of the identity of the salt anion within a Hofmeister (lyotropic) series: I- greater than SCN- greater than NO3- greater than Cl- greater than F-, and, in these terms, was not significantly different for a series of inorganic chlorides (Li+, Na+, K+, Cs+). The effects of salts on the natural lipoprotein substrates, chylomicrons, and very low density lipoproteins were similar to those obtained with a synthetic lipid-protein substrate complex. These findings are discussed in the light of recent ideas on the activation of lipoprotein lipase.  相似文献   

17.
The total lipoprotein lipase activity recovered in suspension of cells prepared from adult rat hearts was unaffected by the nutritional state of the animals used. The enzyme activity present in the cell suspensions was almost exclusively associated with the cardiac muscle cells present as the major cell type.  相似文献   

18.
Summary Sectioning of the afferent nerves (NCCl and NCCll) to the locust corpus cardiacum prevents thein vivo release of adipokinetic hormone from the glandular lobes. This failure to release the hormone during flight and the consequent lack of lipid mobilisation brings about an impairment of flight performance which can be corrected by injections of corpus cardiacum extracts. Sectioning of the NCCl and NCCll reduces markedly the activity of the corpora allata. However, the poor flight performance of allatectomised locusts is not related to an inability to mobilise lipid since injections of corpus cardiacum extract which will mobilise fat body lipid in these locusts have no effect on flight performance. The results of individual sectioning of the NCCl and NCCll suggest that a double innervation of the glandular lobes functionsin vivo to control adipokinetic hormone release but that the NCCl alone may control the release of the diuretic hormone.  相似文献   

19.
Voluntary exercise of rats in freely rotating work wheels has been extensively used, but muscle adaptations that result from such exercise training are poorly documented. The purpose of this study was to determine whether the exercise performed by voluntarily active rats would increase succinate dehydrogenase or lipoprotein lipase activities in the soleus muscle (SM) or the red portion of the vastus lateralis muscle (RV). In SM the activities of these two enzymes were not increased after 7 or 16 wk of voluntary exercise. Succinate dehydrogenase activity in RV was moderately increased after 7 and 16 wk of voluntary activity (P less than 0.05). Substantial increases occurred in RV lipoprotein lipase activity (P less than 0.01). The increase in RV lipoprotein lipase activity was positively related to distance run by the rats. The results indicate that only small muscle-dependent increases in mitochondrial enzymes occur in rats allowed to exercise voluntarily in rodent work wheels. Voluntary exercise training induced a selective increase in lipoprotein lipase activity in a muscle containing a high percentage of fast-twitch red fibers, a response absent in a muscle containing a predominance of slow-twitch red fibers. It is unlikely that this differential response can be explained by exercise-induced changes in plasma hormone concentrations involved in the regulation of lipoprotein lipase.  相似文献   

20.
Lipoprotein lipase and hepatic lipase are members of the lipase gene family sharing a high degree of homology in their amino acid sequences and genomic organization. We have recently shown that isolated hepatocytes from neonatal rats express both enzyme activities. We show here that both enzymes are, however, differentially regulated. Our main findings are: (i) fasting induced an increase of the lipoprotein lipase activity but a decrease of the hepatic lipase activity in whole liver, being in both cases the vascular (heparin-releasable) compartment responsible for these variations. (ii) In isolated hepatocytes, secretion of lipoprotein lipase activity was increased by adrenaline, dexamethasone and glucagon but was not affected by epidermal growth factor, insulin or triiodothyronine. On the contrary, secretion of hepatic lipase activity was decreased by adrenaline but was not affected by other hormones. (iii) The effect of adrenaline on lipoprotein lipase activity appeared to involve beta-adrenergic receptors, but stimulation of both beta- and alpha 1-receptors seemed to be required for the effect of this hormone on hepatic lipase activity. And (iv), increased secretion of lipoprotein lipase activity was only observed after 3 h of incubation with adrenaline and was blocked by cycloheximide. On the contrary, decreased secretion of hepatic lipase activity was already significant after 90 min of incubation and was not blocked by cycloheximide. We suggest that not only synthesis of both enzymes, but also the posttranslational processing, are under separate control in the neonatal rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号