首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cDNA cloning of the beta-subunit of the rat gastric H,K-ATPase   总被引:8,自引:0,他引:8  
A cDNA encoding the beta-subunit of the rat gastric H,K-ATPase has been identified using oligonucleotide probes based on the amino acid sequences of two peptides from the pig H,K-ATPase beta-subunit (Hall, K., Perez, G., Anderson, D., Gutierrez, C., Munson, K., Hersey, S. J., Kaplan, J. H., and Sachs, G. (1990) Biochemistry 29, 701-706). The nucleotide sequence of the 1.3-kilobase cDNA has been determined and the primary structure of the protein deduced. The protein consists of 294 amino acids and has an Mr of 33,625. The amino acid sequence of the H,K-ATPase beta-subunit is similar to those of the beta 1 (29% identity) and beta 2 (37% identity) subunits of the Na,K-ATPase. Based on the hydropathy profile it seems to have the same transmembrane organization as the Na,K-ATPase beta-subunit, with a single membrane-spanning domain near the amino terminus. Seven potential N-linked glycosylation sites are located in the putative extracellular regions of the protein. Northern blot analyses of poly(A)+ RNAs from 13 tissues demonstrate that the H,K-ATPase beta-subunit mRNA is expressed at high level in stomach and is not expressed in any of the other tissues.  相似文献   

2.
The gamma subunit of the Na,K-ATPase is a small membrane protein that copurifies with the alpha and beta subunits of the enzyme. Strong evidence that the gamma subunit is a component of the Na,K-ATPase comes from studies indicating that the subunit is involved in forming the site for cardiac glycoside binding. We have isolated and characterized the cDNAs coding the gamma subunit from several species. The gamma subunit is a highly conserved protein consisting of 58 amino acids with a molecular weight of 6500. Hydropathy analysis reveals the presence of a single hydrophobic domain that is sufficient to cross the membrane. There are no sites for N-linked glycosylation. Northern blot analysis revealed that the gamma subunit mRNA is expressed in a tissue-specific fashion and is present in all tissues characterized. gamma-specific antibodies have been used to verify that the sequenced protein is the same protein labeled by [3H]nitroazidobenzoyl-ouabain (NAB-ouabain), and that this protein, the gamma subunit of the Na,K-ATPase, has a distribution pattern along nephron segments that is identical with the alpha subunit. In addition, coimmunoprecipitation of the alpha, beta and gamma subunits demonstrate specific association of the subunits. These results are consistent with the notion that the gamma subunit is specifically associated with and may be an important component of the Na,K-ATPase.  相似文献   

3.
Corticosteroid hormone-induced factor (CHIF) and the gamma subunit of the Na,K-ATPase (gamma) are two members of the FXYD family whose function has been elucidated recently. CHIF and gamma interact with the Na+ pump and alter its kinetic properties, in different ways, which appear to serve their specific physiological roles. Although functional interactions with the Na,K-ATPase have been clearly demonstrated, it is not known which domains and which residues interact with the alpha and/or beta subunits and affect the pump kinetics. The current study provides the first systematic analysis of structure-function relations of CHIF and gamma. It is demonstrated that the stability of detergent-solubilized complexes of CHIF and gamma with alpha and/or beta subunits is determined by the trans-membrane segments, especially three residues that may be involved in hydrophobic interactions. The transmembrane segments also determine the opposite effects of CHIF and gamma on the Na+ affinity of the pump, but the amino acids involved in this functional effect are different from those responsible for stable interactions with alpha.  相似文献   

4.
The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.  相似文献   

5.
In Na,K-ATPase membrane preparations from shark rectal glands, we have previously identified an FXYD domain-containing protein, phospholemman-like protein from shark, PLMS. This protein was shown to associate and modulate shark Na,K-ATPase activity in vitro. Here we describe the complete coding sequence, expression, and cellular localization of PLMS in the rectal gland of the shark Squalus acanthias. The mature protein contained 74 amino acids, including the N-terminal FXYD motif and a C-terminal protein kinase multisite phosphorylation motif. The sequence is preceded by a 20 amino acid candidate cleavable signal sequence. Immunogold labeling of the Na,K-ATPase alpha-subunit and PLMS showed the presence of alpha and PLMS in the basolateral membranes of the rectal gland cells and suggested their partial colocalization. Furthermore, through controlled proteolysis, the C terminus of PLMS containing the protein kinase phosphorylation domain can be specifically cleaved. Removal of this domain resulted in stimulation of maximal Na,K-ATPase activity, as well as several partial reactions. Both the E1 approximately P --> E2-P reaction, which is partially rate-limiting in shark, and the K+ deocclusion reaction, E2(K) --> E1, are accelerated. The latter may explain the finding that the apparent Na+ affinity was increased by the specific C-terminal PLMS truncation. Thus, these data are consistent with a model where interaction of the phosphorylation domain of PLMS with the Na,K-ATPase alpha-subunit is important for the modulation of shark Na,K-ATPase activity.  相似文献   

6.
We have isolated cDNA clones encoding the bovine and rat gastric H,K-ATPase beta subunit. A bovine abomasum lambda gt11 cDNA library was screened with a monoclonal antibody raised against the rabbit H,K-ATPase beta subunit. A single positive phage clone containing an approximately 900-base pair cDNA insert was identified as reactive with the antibody. The identity of the cDNA was established by comparing the deduced amino acid sequence with sequences of cyanogen bromide fragments of the porcine H,K-ATPase beta subunit. Polymerase chain reaction and rapid amplification of cDNA ends were used to generate a cDNA fragment encoding the carboxyl-terminal portion of the rat gastric H,K-ATPase beta subunit. A rat stomach cDNA library was screened with the polymerase chain reaction product, and several full-length beta subunit cDNA clones were identified. The open reading frame predicts a protein of 294 amino acids with a molecular weight of 33,689. The rat H,K-ATPase beta subunit shows 41% amino acid sequence identity to the rat Na,K-ATPase beta 2 subunit and shares a number of structural similarities with Na,K-ATPase beta subunit isoforms. By analyzing the segregation of restriction fragment length polymorphisms among recombinant inbred strains of mice, we localized the H,K-ATPase beta subunit gene to murine chromosome 8. Northern and Western blot analysis reveals that this gene is expressed exclusively in stomach. Our results suggest that the H,K-ATPase and Na,K-ATPase beta subunits evolved from a common ancestral gene and may play similar functional roles in enzyme activity.  相似文献   

7.
Thermal denaturation can help elucidate protein domain substructure. We previously showed that the Na,K-ATPase partially unfolded when heated to 55 degrees C (Arystarkhova, E., Gibbons, D. L., and Sweadner, K. J. (1995) J. Biol. Chem. 270, 8785-8796). The beta subunit unfolded without leaving the membrane, but three transmembrane spans (M8-M10) and the C terminus of the alpha subunit were extruded, while the rest of alpha retained its normal topology with respect to the lipid bilayer. Here we investigated thermal denaturation further, with several salient results. First, trypsin sensitivity at both surfaces of alpha was increased, but not sensitivity to V8 protease, suggesting that the cytoplasmic domains and extruded domain were less tightly packed but still retained secondary structure. Second, thermal denaturation was accompanied by SDS-resistant aggregation of alpha subunits as dimers, trimers, and tetramers without beta or gamma subunits. This implies specific alpha-alpha contact. Third, the gamma subunit, like the C-terminal spans of alpha, was selectively lost from the membrane. This suggests its association with M8-M10 rather than the more firmly anchored transmembrane spans. The picture that emerges is of a Na,K-ATPase complex of alpha, beta, and gamma subunits in which alpha can associate in assemblies as large as tetramers via its cytoplasmic domain, while beta and gamma subunits associate with alpha primarily in its C-terminal portion, which has a unique structure and thermal instability.  相似文献   

8.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We have determined the carbohydrate compositions of the protein components of lamb kidney Na,K-ATPase. The α subunit contains a total of about 16 monosaccharide residues per mol of protein, while the β subunit contains about 36 residues per mol. The γ protein, a proteolipid associated with the Na,K-ATPase, contains only traces of carbohydrate. A comparison of our results with those of others shows considerable variability in the carbohydrate compositions of α and β subunits from different species.  相似文献   

10.
The human Na,K-ATPase beta-subunit is anchored to the membrane by a single stretch of 28 hydrophobic amino acids; the hydrophilic amino terminus faces the cytoplasm and the carboxyl terminus is exoplasmic. Glycosylation and insertion of the Na,K-ATPase beta-subunit into the endoplasmic reticulum membrane are shown to be co-translational and SRP-dependent. The hydrophilic amino terminus is not required for the membrane insertion. The membrane-anchor domain is necessary for membrane insertion, and a 16 amino acid stretch has been identified as an element sufficient for the insertion.  相似文献   

11.
Oligomerization of the Na,K-ATPase in cell membranes   总被引:3,自引:0,他引:3  
The higher order oligomeric state of the Na,K-ATPase alphabeta heterodimer in cell membranes is the subject of controversy. We have utilized the baculovirus-infected insect cell system to express Na,K-ATPase with alpha-subunits bearing either His(6) or FLAG epitopes at the carboxyl terminus. Each of these constructs produced functional Na,K-ATPase alphabeta heterodimers that were delivered to the plasma membrane (PM). Cells were simultaneously co-infected with viruses encoding alpha-His/beta and alpha-FLAG/beta Na,K-ATPases. Co-immunoprecipitation of the His-tagged alpha-subunit in the endoplasmic reticulum (ER) and PM fractions of co-infected cells by the anti-FLAG antibody demonstrates that protein-protein associations exist between these heterodimers. This suggests the Na,K-ATPase is present in cell membranes in an oligomeric state of at least (alphabeta)(2) composition. Deletion of 256 amino acid residues from the central cytoplasmic loop of the alpha-subunit results in the deletion alpha-4,5-loop-less (alpha-4,5LL), which associates with beta but is confined to the ER. Co-immunoprecipitation demonstrates that when this inactive alpha-4,5LL/beta heterodimer is co-expressed with wild-type alphabeta, oligomers of wild-type alphabeta and alpha-4,5LL/beta form in the ER, but the alpha-4,5LL mutant remains retained in the ER, and the wild-type protein is still delivered to the PM. We conclude that the Na,K-ATPase is present as oligomers of the monomeric alphabeta heterodimer in native cell membranes.  相似文献   

12.
Little is known about the specific domains of G protein beta and gamma subunits which interact with each other and with the alpha subunit. We used site-specific anti-peptide antibodies directed against beta and gamma subunits to investigate domains on beta and gamma subunits involved in alpha subunit interaction. Antibodies included four against the transducin (Gt) beta subunit (residues 1-10 = MS, 127-136 = KT, 256-265 = RA, and 330-340 = SW) and two against the gamma subunit (residues 2-12 = PV and 58-68 = PE). All antisera, when affinity-purified on peptide columns, yielded antibodies capable of recognizing the denatured cognate subunit on immunoblots, but only RA, SW, PV, and PE recognized native beta gamma t subunits. Affinity purification of MS and KT antisera on columns of immobilized native Gt yielded antibodies capable of recognizing native beta gamma t subunits. The functional effects of each antibody preparation on alpha t-beta gamma t interaction were assessed by assaying the ability of the preparations to immunoprecipitate beta gamma t subunits in the presence of excess alpha subunits and by testing the inhibition of beta gamma t-dependent ADP-ribosylation of alpha t-subunits catalyzed by pertussis toxin. On the basis of the results, we conclude that the domains on beta gamma t which may be directly involved in alpha t-beta gamma t interaction include the extreme amino terminus, residues 127-136 and 256-265 of beta t, and the carboxyl terminus of gamma t.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.  相似文献   

14.
On the molecular basis of ion permeation in the epithelial Na+ channel.   总被引:3,自引:0,他引:3  
The epithelial Na+ channel (ENaC) is highly selective for Na+ and Li+ over K+ and is blocked by the diuretic amiloride. ENaC is a heterotetramer made of two alpha, one beta, and one gamma homologous subunits, each subunit comprising two transmembrane segments. Amino acid residues involved in binding of the pore blocker amiloride are located in the pre-M2 segment of beta and gamma subunits, which precedes the second putative transmembrane alpha helix (M2). A residue in the alpha subunit (alphaS589) at the NH2 terminus of M2 is critical for the molecular sieving properties of ENaC. ENaC is more permeable to Li+ than Na+ ions. The concentration of half-maximal unitary conductance is 38 mM for Na+ and 118 mM for Li+, a kinetic property that can account for the differences in Li+ and Na+ permeability. We show here that mutation of amino acid residues at homologous positions in the pre-M2 segment of alpha, beta, and gamma subunits (alphaG587, betaG529, gammaS541) decreases the Li+/Na+ selectivity by changing the apparent channel affinity for Li+ and Na+. Fitting single-channel data of the Li+ permeation to a discrete-state model including three barriers and two binding sites revealed that these mutations increased the energy needed for the translocation of Li+ from an outer ion binding site through the selectivity filter. Mutation of betaG529 to Ser, Cys, or Asp made ENaC partially permeable to K+ and larger ions, similar to the previously reported alphaS589 mutations. We conclude that the residues alphaG587 to alphaS589 and homologous residues in the beta and gamma subunits form the selectivity filter, which tightly accommodates Na+ and Li+ ions and excludes larger ions like K+.  相似文献   

15.
FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped α-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase α and β subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na+/K+ ion binding site of the Na,K-ATPase α subunit.  相似文献   

16.
We have identified the fifth member of the mammalian X,K-ATPase beta-subunit gene family. The human and rat genes are largely expressed in skeletal muscle and at a lower level in heart. The deduced human and rat proteins designated as beta(muscle) (beta(m)) consist of 357 and 356 amino acid residues, respectively, and exhibit 89% identity. The sequence homology of beta(m) proteins with known Na,K- and H,K-ATPase beta-subunits are 30.5-39.4%. Unlike other beta-subunits, putative beta(m) proteins have large N-terminal cytoplasmic domains containing long Glu-rich sequences. The data obtained indicate the existence of hitherto unknown X,K-ATPase (most probably Na,K-ATPase) isozymes in muscle cells.  相似文献   

17.
18.
The integrin family of adhesion receptors consists of several heterodimeric glycoproteins, each composed of one alpha and one beta subunit. Three different mammalian beta subunits, beta 1, beta 2, and beta 3, have been sequenced, but recent evidence suggests the existence of several others. Amplification of guinea pig airway epithelial cell cDNA with oligonucleotide primers designed to recognize consensus integrin beta subunit sequences led to the identification of a novel partial cDNA sequence. Clones containing portions of this sequence were used to screen cDNA libraries constructed from the human pancreatic carcinoma cell line FG-2 and identified a series of overlapping clones encoding the full-length sequence of the human homologue of this protein. This sequence of 788 amino acids is 43, 38, and 47% identical to the sequences of beta 1, beta 2, and beta 3, respectively. Features shared between this novel protein and the previously sequenced beta subunits include the positions of all 56 cysteine residues in the extracellular domain, the single putative transmembrane domain, and the short putative cytoplasmic domain. However, a unique 11-amino acid extension at the carboxyl terminus, not present in any of the other beta subunits, is suggestive of distinctive interactions with cytoplasmic components. Comparison of the human and guinea pig sequences reveals a high degree (94%) of cross-species conservation. Because this protein is clearly distinct from the two other recently described integrins beta 4 and beta 5, we propose to designate it beta 6.  相似文献   

19.
Origin of the gamma polypeptide of the Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction.  相似文献   

20.
In order to understand the molecular mechanism of ouabain resistance in the toad Bufo marinus, Na,K-ATPase alpha and beta subunits have been cloned and their functional properties tested in the Xenopus laevis oocyte expression system. According to sequence comparison between species, alpha 1, beta 1, and beta 3 isoforms were identified in a clonal toad urinary bladder cell line (TBM 18-23). The sequence of the alpha 1 isoform is characterized by two positively charged amino acids (Arg, Lys) at the N-terminal border of the H1-H2 extracellular loop and no charged amino acid at the C terminus, a pattern distinct from the ouabain-resistant rat alpha 1 isoform. The coexpression of alpha 1 beta 1 or alpha 1 beta 3 TBM subunits in the Xenopus oocyte resulted in the expression of identical maximum Na,K-pump currents with identical inhibition constant for ouabain (Ki) (alpha 1 beta 1: 53 +/- 3 microM; n = 7 vs. alpha 1 beta 3: 57 +/- 3.0 microM; n = 8) but distinct potassium half activation constant (K1/2) (alpha 1 beta 1: 0.87 +/- 0.08 mM, n = 16; alpha 1 beta 3: 1.29 +/- 0.07 mM, n = 17; p less than 0.005). We conclude that (i) the TBM alpha 1 isoform is necessary and sufficient to confer the ouabain resistant phenotype; (ii) the beta 3 or beta 1 subunit can associate with the alpha 1 equally well without affecting the ouabain-resistant phenotype; (iii) some specific sequence of the beta subunit can modulate the activation of the Na,K-pump by extracellular potassium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号