首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea urchin fibropellins are epidermal growth factor homologues that harbor a C-terminal domain, similar in sequence to hen egg-white avidin and bacterial streptavidin. The fibropellin sequence was used as a conceptual template for mutation of designated conserved tryptophan residues in the biotin-binding sites of the tetrameric proteins, avidin and streptavidin. Three different mutations of avidin, Trp-110-Lys, Trp-70-Arg and the double mutant, were expressed in a baculovirus-infected insect cell system. A mutant of streptavidin, Trp-120-Lys, was similarly expressed. The homologous tryptophan to lysine (W-->K) mutations of avidin and streptavidin were both capable of binding biotin and biotinylated material. Their affinity for the vitamin was, however, significantly reduced: from K(d) approximately 10(-15) M of the wild-type tetramer down to K(d) approximately 10(-8) M for both W-->K mutants. In fact, their binding to immobilized biotin matrices could be reversed by the presence of free biotin. The Trp-70-Arg mutant of avidin bound biotin very poorly and the double mutant (which emulates the fibropellin domain) failed to bind biotin at all. Using a gel filtration fast-protein liquid chromatography assay, both W-->K mutants were found to form stable dimers in solution. These findings may indicate that mimicry in the nature of the avidin sequence and fold by the fibropellins is not designed to generate biotin-binding, but may serve to secure an appropriate structure for facilitating dimerization.  相似文献   

2.
L T Hunt  W C Barker 《FASEB journal》1989,3(6):1760-1764
We have found that a protein from the purple sea urchin has a carboxyl-terminal domain with striking sequence similarity to chicken avidin and bacterial streptavidin. All our evidence supports the homology of these sequences. Tetramers of avidin and streptavidin bind biotin strongly; the biotin binding site involves two to four tryptophans and probably an adjacent lysine in each chain. The presence of four tryptophans at equivalent positions in the sea urchin protein domain suggests that it may also be able to bind biotin and inhibit cell growth, as do the two other proteins. Alternatively, this domain may have acquired a new role as part of a multidomain protein.  相似文献   

3.
4.
A gene encoding an avidin-like protein was discovered in the genome of B. japonicum. The gene was cloned to an expression vector and a protein, named bradavidin II, was produced in E. coli. Bradavidin II has an identity of 20-30% and a similarity of 30-40% with previously discovered bradavidin and other avidin-like proteins. It has biochemical characteristics close to those of avidin and streptavidin and binds biotin tightly. In contrast to other tetrameric avidin-like proteins studied to date, bradavidin II has no tryptophan analogous to the W110 in avidin (W120 in streptavidin), thought to be one of the most essential residues for tight biotin-binding. Homology modeling suggests that a proline residue may function analogously to tryptophan in this particular position. Structural elements of bradavidin II such as an interface residue pattern or biotin contact residues could be used as such or transferred to engineered avidin forms to improve or create new tools for biotechnological applications.  相似文献   

5.
Rhizobium etli CFN42 is a symbiotic nitrogen-fixing bacterium of the common bean Phaseolus vulgaris. The symbiotic plasmid p42d of R. etli comprises a gene encoding a putative (strept)avidin-like protein, named rhizavidin. The amino acid sequence identity of rhizavidin in relation to other known avidin-like proteins is 20-30%. The amino acid residues involved in the (strept)avidin-biotin interaction are well conserved in rhizavidin. The structural and functional properties of rhizavidin were carefully studied, and we found that rhizavidin shares characteristics with bradavidin, streptavidin and avidin. However, we found that it is the first naturally occurring dimeric protein in the avidin protein family, in contrast with tetrameric (strept)avidin and bradavidin. Moreover, it possesses a proline residue after a flexible loop (GGSG) in a position close to Trp-110 in avidin, which is an important biotin-binding residue. [3H]Biotin dissociation and ITC (isothermal titration calorimetry) experiments showed dimeric rhizavidin to be a high-affinity biotin-binding protein. Its thermal stability was lower than that of avidin; although similar to streptavidin, it was insensitive to proteinase K. The immunological cross-reactivity of rhizavidin was tested with human serum samples obtained from cancer patients exposed to (strept)avidin. No significant cross-reactivity was observed. The biodistribution of the protein was studied by SPECT (single-photon emission computed tomography) imaging in rats. Similarly to avidin, rhizavidin was observed to accumulate rapidly, mainly in the liver. Evidently, rhizavidin could be used as a complement to (strept)avidin in (strept)avidin-biotin technology.  相似文献   

6.
The sea urchin SpEGF 1 gene belongs to a growing family of developmentally important genes which encode proteins that contain repeated epidermal growth factor-like motifs. To characterize the embryonic expression of the protein products of this gene from Strongylocentrotus purpuratus, we generated polyclonal antisera from SpEGF I fusion proteins. These antibodies recognize two glycoproteins of 145 and 185 kDa, which we have named fibropellins. These proteins are present in unfertilized oocytes and throughout early development. The fibropellins are stored in cytoplasmic vesicles in the oocyte and are released soon after fertilization in a distinct secretory event following the exocytosis of cortical granule contents. Following secretion the proteins are localized in the basal surface of the hyaline layer. At the blastula stage the fibropellins become organized into distinct fibers which form a mesh-like network over the surface of the embryo. During subsequent development to the pluteus larva stage this network increases in overall morphological complexity and becomes regionally distinct. The molecular weights of the fibropellins and their pattern of embryonic localization indicate that these proteins form a component of the hyaline layer previously described as the apical lamina.  相似文献   

7.
UV resonance Raman (UVRR) spectroscopy is used to study the binding of biotin and 2-iminobiotin by streptavidin, and the results are compared to those previously obtained from the avidin-biotin complex and new data from the avidin-2-iminobiotin complex. UVRR difference spectroscopy using 244-nm excitation reveals changes to the tyrosine (Tyr) and tryptophan (Trp) residues of both proteins upon complex formation. Avidin has four Trp and only one Tyr residue, while streptavidin has eight Trp and six Tyr residues. The spectral changes observed in streptavidin upon the addition of biotin are similar to those observed for avidin. However, the intensity enhancements observed for the streptavidin Trp Raman bands are less than those observed with avidin. The changes observed in the streptavidin Tyr bands are similar to those observed for avidin and are assigned exclusively to the binding site Tyr 43 residue. The Trp and Tyr band changes are due to the exclusion of water and addition of biotin, resulting in a more hydrophobic environment for the binding site residues. The addition of 2-iminobiotin results in spectral changes to both the streptavidin and avidin Trp bands that are very similar to those observed upon the addition of biotin in each protein. The changes to the Tyr bands are very different than those observed with the addition of biotin, and similar spectral changes are observed in both streptavidin and avidin. This is attributable to hydrogen bond changes to the binding site Tyr residue in each protein, and the similar Tyr difference features in both proteins supports the exclusive assignment of the streptavidin Tyr difference features to the binding site Tyr 43.  相似文献   

8.
The biotin-binding tetrameric proteins, streptavidin from Streptomyces avidinii and chicken egg white avidin, are excellent models for the study of subunit-subunit interactions of a multimeric protein. Efforts are thus being made to prepare mutated forms of streptavidin and avidin, which would form monomers or dimers, in order to examine their effect on quaternary structure and assembly. In the present communication, we compared the crystal structures of binding site W-->K mutations in streptavidin and avidin. In solution, both mutant proteins are known to form dimers, but upon crystallization, both formed tetramers with the same parameters as the native proteins. All of the intersubunit bonds were conserved, except for the hydrophobic interaction between biotin and the tryptophan that was replaced by lysine. In the crystal structure, the binding site of the mutated apo-avidin contains 3 molecules of structured water instead of the 5 contained in the native protein. The lysine side chain extends in a direction opposite that of the native tryptophan, the void being partially filled by an adjacent lysine residue. Nevertheless, the binding-site conformation observed for the mutant tetramer is an artificial consequence of crystal packing that would not be maintained in the solution-phase dimer. It appears that the dimer-tetramer transition may be concentration dependent, and the interaction among subunits obeys the law of mass action.  相似文献   

9.
DNA labeled with the chemically cleavable biotinylated nucleotide Bio-12-SS-dUTP was chromatographed on biotin cellulose affinity columns using either avidin or streptavidin as the affinity reagent. Although both proteins were equally effective in binding the Bio-12-SS-DNA to the affinity resin, two important differences were found. First, nonbiotinylated DNA bound to avidin, but not to streptavidin, in buffers containing 50 mM NaCl. Second, Bio-12-SS-DNA was released much more slowly from the streptavidin affinity column than from the avidin column upon washing with buffer containing dithiothreitol. This difficulty in reducing the disulfide bond of Bio-12-SS-DNA bound to streptavidin is most likely due to steric protection of the disulfide bond by the protein. This conclusion is supported by our finding that DNA labeled with another biotinylated nucleotide analog, Bio-19-SS-dUTP, is rapidly and efficiently recovered from a streptavidin column. In Bio-19-SS-DNA, the distance between the disulfide bond and the biotin group is approximately 10 A greater than that in Bio-12-SS-DNA. Therefore, Bio-19-SS-dUTP and streptavidin form the basis of an efficient affinity system for the isolation and subsequent recovery of biotinylated DNA in the presence of low ionic strength buffers.  相似文献   

10.
A monovalent streptavidin with a single femtomolar biotin binding site   总被引:1,自引:0,他引:1  
Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10(4)-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.  相似文献   

11.
Peptides consisting solely of D -amino acids (D -peptides) as opposed to their L -counterparts (L -peptides) are resistant towards proteolytic degradation in the organism and may therefore be useful in future efforts to develop new stable peptide-based drugs. Using the random synthetic peptide library technique several L - and D -peptides, capable of binding to both avidin and streptavidin, were found. The L -peptides contained the previously described HPQ/M motifis, and among the D -peptides three binding motifs could be identified, of which the most frequently found one contained an N-terminal aliphatic hydrophobic amino acid (V, L or I) and an aromatic amino acid (Y or F) on the second position. At the third position in this motif several different amino acid residues were found, although N was the most frequent. Peptides representing two of the D -motifs were synthesized as well as peptides containing the HPQ/M motifs, and their binding properties were examined. Although the D -peptides were originally selected using avidin they also inhibited binding between immobilized biotin and soluble streptavidin as well as avidin. The IC50 of some of the peptides were approximately 105 times higher than the IC50 for biotin but some had a lower IC50 than iminobiotin. The D -peptides, which were originally selected from the library using avidin, could also inhibit the binding between streptavidin and biotin. Likewise, L -peptides selected from a library screened with streptavidin, could inhibit the binding of both streptavidin and avidin to immobilized biotin. Furthermore, the D -peptide, VFSVQSGS, as well as biotin could inhibit binding of streptavidin to an immobilized L -peptide (RYHPQSGS). This indicates that the biotin-like structure mimicked by these two seemingly very different peptides may react with the same binding sites in the streptavidin molecule.  相似文献   

12.
We have studied the structural elements that affect ligand exchange between the two high affinity biotin-binding proteins, egg white avidin and its bacterial analogue, streptavidin. For this purpose, we have developed a simple assay based on the antipodal behavior of the two proteins toward hydrolysis of biotinyl p-nitrophenyl ester (BNP). The assay provided the experimental basis for these studies. It was found that biotin migrates unidirectionally from streptavidin to avidin. Conversely, the biotin derivative, BNP, is transferred in the opposite direction, from avidin to streptavidin. A previous crystallographic study (Huberman, T., Eisenberg-Domovich, Y., Gitlin, G., Kulik, T., Bayer, E. A., Wilchek, M., and Livnah, O. (2001) J. Biol. Chem. 276, 32031-32039) provided insight into a plausible explanation for these results. These data revealed that the non-hydrolyzable BNP analogue, biotinyl p-nitroanilide, was almost completely sheltered in streptavidin as opposed to avidin in which the disordered conformation of a critical loop resulted in the loss of several hydrogen bonds and concomitant exposure of the analogue to the solvent. In order to determine the minimal modification of the biotin molecule required to cause the disordered loop conformation, the structures of avidin and streptavidin were determined with norbiotin, homobiotin, and a common long-chain biotin derivative, biotinyl epsilon-aminocaproic acid. Six new crystal structures of the avidin and streptavidin complexes with the latter biotin analogues and derivatives were thus elucidated. It was found that extending the biotin side chain by a single CH(2) group (i.e. homobiotin) is sufficient to result in this remarkable conformational change in the loop of avidin. These results bear significant biotechnological importance, suggesting that complexes containing biotinylated probes with streptavidin would be more stable than those with avidin. These findings should be heeded when developing new drugs based on lead compounds because it is difficult to predict the structural and conformational consequences on the resultant protein-ligand interactions.  相似文献   

13.
Bradavidin II is a biotin‐binding protein from Bradyrhizobium japonicum that resembles chicken avidin and bacterial streptavidin. A biophysical characterization was carried out using dynamic light scattering, native mass spectrometry, differential scanning calorimetry, and isothermal titration calorimetry combined with structural characterization using X‐ray crystallography. These observations revealed that bradavidin II differs from canonical homotetrameric avidin protein family members in its quaternary structure. In contrast with the other avidins, bradavidin II appears to have a dynamic (transient) oligomeric state in solution. It is monomeric at low protein concentrations but forms higher oligomeric assemblies at higher concentrations. The crystal structure of bradavidin II revealed an important role for Phe42 in shielding the bound ligand from surrounding water molecules, thus functionally replacing the L7,8 loop essential for tight ligand binding in avidin and streptavidin. This bradavidin II characterization opens new avenues for oligomerization‐independent biotin‐binding protein development.  相似文献   

14.
Chicken avidin, a homotetramer that binds four molecules of biotin was converted to a monomeric form by successive mutations of interface residues to alanine. The major contribution to monomer formation was the mutation of two aspartic acid residues, which together account for ten hydrogen bonding interactions at the 1-4 interface. Mutation of these residues, together with the three hydrophobic residues at the 1-3 interface, led to stable monomer formation in the absence of biotin. Upon addition of biotin, the monomeric avidin reassociated to the tetramer, which exhibited properties similar to those of native avidin, with respect to biotin binding, thermostability, and protease resistance. To our knowledge, these unexpected results represent the first example of a small monovalent ligand that induces oligomerization of a monomeric protein. This study may suggest a biological role for low molecular weight ligands in inducing oligomerization and in maintaining the stability of multimeric protein assemblies.  相似文献   

15.
16.
A colorimetric competitive inhibition assay for avidin, streptavidin and biotin was developed. The method for avidin or streptavidin was based on the competitive binding between avidin or streptavidin and a streptavidin-enzyme conjugate for biotinylated dextrin immobilized on the surface of a microtitre plate. For biotin quantitation the competition is between free biotin and the immobilized biotin for the streptavidin-enzyme conjugate. The limits of detection which was determined as the concentration of competitor required to give 90% of maximal absorbency (100% inhibition) was approximately 20 ng/100 microl per assay for avidin and streptavidin and 0.4 pg/100 microl per assay for biotin. The methods are simple, rapid, highly sensitive and adaptable to high throughput analysis.  相似文献   

17.
A pseudoknot-containing aptamer isolated from a pool of random sequence molecules has been shown previously to represent an optimal RNA solution to the problem of binding biotin. The affinity of this RNA molecule is nonetheless orders of magnitude weaker than that of its highly evolved protein analogs, avidin and streptavidin. To understand the structural basis for biotin binding and to compare directly strategies for ligand recognition available to proteins and RNA molecules, we have determined the 1.3 A crystal structure of the aptamer complexed with its ligand. Biotin is bound at the interface between the pseudoknot's stacked helices in a pocket defined almost entirely by base-paired nucleotides. In comparison to the protein avidin, the aptamer packs more tightly around the biotin headgroup and makes fewer contacts with its fatty acid tail. Whereas biotin is deeply buried within the hydrophobic core in the avidin complex, the aptamer relies on a combination of hydrated magnesium ions and immobilized water molecules to surround its ligand. In addition to demonstrating fundamentally different approaches to molecular recognition by proteins and RNA, the structure provides general insight into the mechanisms by which RNA function is mediated by divalent metals.  相似文献   

18.
19.
The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin. The protein is highly expressed in the gonads of both male and female zebrafish and in the gills of male fish, but our data suggest that zebavidin is not crucial for the developing embryo. Biophysical and structural characterisation of zebavidin revealed distinct properties not found in any previously characterised avidins. Gel filtration chromatography and native mass spectrometry suggest that the protein forms dimers in the absence of biotin at low ionic strength, but assembles into tetramers upon binding biotin. Ligand binding was analysed using radioactive and fluorescently labelled biotin and isothermal titration calorimetry. Moreover, the crystal structure of zebavidin in complex with biotin was solved at 2.4 Å resolution and unveiled unique ligand binding and subunit interface architectures; the atomic-level details support our physicochemical observations.  相似文献   

20.
Highly specific ligand-receptor interactions generally characterize surface recognition reactions. Such processes can be simulated by streptavidin-biotin-specific binding. Biotin lipids have thus been synthesized, and their interaction with streptavidin (or avidin) at the air-water interface was directly shown by measurement of surface pressure isotherms and fluorescence microscopy. These proteins interact with the biotin lipid monolayer via specific binding or nonspecific adsorption. Both phenomena were clearly distinguished by use of the inactivated form of streptavidin. The binding of fluorescein-labeled streptavidin to monolayers was also directly observed by fluorescence microscopy. The fluorescence of the protein domains is directly related to the state of polarization of the exciting light. This anisotropy can only be explained by the formation of oriented two-dimensional biotin lipid-streptavidin domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号