首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T F Ho  J S Gupta  E A Faust 《Biochemistry》1989,28(11):4622-4628
Two species of DNA polymerase alpha free of primase activity were identified in extracts of Ehrlich mouse cells that had been infected with minute virus of mice. Primase-free forms of DNA polymerase alpha eluted with 150 and 180 mM NaCl during ion-exchange chromatography on DEAE-cellulose columns, exhibited sedimentation coefficients of 11 S and 8.2 S, respectively, and were inhibited by aphidicolin, N2-(p-n-butylphenyl)-9-(2-deoxy-beta-D-ribofuranosyl)guanine 5'-triphosphate, and 2-(p-n-butylanilino)-9-(2-deoxy-beta-D-ribofuranosyl)adenine 5'-triphosphate. The ratio of primase-free DNA polymerase alpha to the DNA polymerase alpha-primase complex increased from 1.5 to greater than 100 during the course of infection, and free primase was produced during the MVM replicative cycle.  相似文献   

2.
Bacillus subtilis glutamine synthetase was modified by two ATP analogs, 5'-p-fluorosulfonylbenzoyladenosine (FSBA) and 8-azidoadenosine 5'-triphosphate (8-N3-ATP), each one containing either Mg2+ or Mn2+. The FSBA labeled peptide was monitored by measuring the characteristic absorbance of the 4-carboxybenzenesulfonyl (CBS) part at 243 nm. The 8-N3ATP photolabeled peptide could also be monitored by measuring its absorption at 310 nm. A single CBS-labeled tryptic peptide was obtained, spanning residues 89-91 from the N-terminal of the subunit polypeptide chain, and sequence analysis by Edman degradation revealed that CBS-arginine was at position 91. The amino acids photolabeled by 8-N3ATP at the ATP-binding site in B. subtilis GS were His-186, His-187, and Trp-424. These results suggested that these four amino acids constitute an ATP-binding active site located at the interface between two subunits. The region surrounding Trp-424, which varies among different prokaryotic enzymes, was considered to be involved in a catalytic or regulatory role in B. subtilis GS. Since the same amino acids were labeled when B. subtilis GS was modified with FSBA or 8-N3ATP in the presence of Mn2+ or Mg2+, no conformational difference between B. subtilis GS binding Mn(2+)-ATP and that binding Mg(2+)-ATP was detected by affinity labeling with ATP analogs.  相似文献   

3.
We have used the photoaffinity analogs 8-azidoadenosine 5'-triphosphate (8-N3ATP) and 8-azidoguanosine 5'-triphosphate (8-N3GTP) to investigate the relationship between a viral induced protein (Mr = 120,000) in tobacco mosaic virus (TMV)-infected tobacco and the TMV-induced RNA-dependent RNA polymerase activity. When the radioactive analogs [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP were incubated with the tobacco tissue homogenate from TMV-infected plants, incorporation of label occurred into the viral induced protein in the presence of UV light. The incorporation was found to be totally dependent on UV-illumination and greatly enhanced by Mg2+. Saturation of photoincorporated label indicates an apparent Kd of 16 microM (+/- 3 microM) and 12 microM (+/- 3 microM) for 8-N3ATP and 8-N3GTP, respectively. Protection against photolabeling by [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP with various nonradioactive nucleotides and nucleosides suggests that the photolabeled site is protected best by nucleoside triphosphates. At 200 microM both deoxyribonucleoside triphosphates and ribonucleoside triphosphates were very effective at protecting the site from photolabeling. These data suggest that the photolabeled protein may be part of an RNA-dependent RNA polymerase. The utility of nucleotide photoaffinity analogs as a method to study viral induced nucleotide-binding proteins is discussed.  相似文献   

4.
Preferential binding of DNA primase to the nuclear matrix in HeLa cells   总被引:5,自引:0,他引:5  
Studies of the spatial organization of DNA replication have provided increasing evidence of the importance of the nuclear matrix. We have previously reported a relationship between rates of DNA synthesis and the differential binding of DNA polymerase alpha to the nuclear matrix over the S-phase. We now report the detection of DNA primase bound to the HeLa nuclear matrix. Matrix-bound primase was measured both indirectly, by the incorporation of [32P]dAMP into an unprimed single-stranded template, poly(dT), and directly, by the incorporation of [3H]AMP into matrix DNA. Characteristics of this system include a requirement for ATP, inhibition by adenosine 5'-O-(thiotriphosphate), a primase inhibitor, and insensitivity to aphidicolin and alpha-amanitine, inhibitors of polymerase alpha and RNA polymerase, respectively. Subcellular quantification of primase and polymerase alpha activity revealed that while most (approximately 72%) primase activity is bound to the matrix, only a minority (approximately 32%) of polymerase alpha activity is matrix-bound. Treatment of the nuclear matrix with beta-D-octylglucoside allowed the solubilization of approximately 54% of primase activity and approximately 39% of the polymerase alpha activity. This data provides further evidence of a structural and functional role for the nuclear matrix in DNA replication. The ability to solubilize matrix-bound replicative enzymes may prove to be an important tool in the elucidation of the spatial organization of DNA replication.  相似文献   

5.
DNA polymerase alpha from Drosophila melanogaster embryos is a multisubunit enzyme complex which can exhibit DNA polymerase, 3'----5' exonuclease, and DNA primase activities. Pyridoxal 5'-phosphate (PLP) inhibition of DNA polymerase activity in this complex is time dependent and exhibits saturation kinetics. Inhibition can be reversed by incubation with an excess of a primary amine unless the PLP-enzyme conjugate is first reduced with NaBH4. These results indicate that PLP inhibition occurs via imine formation at a specific site(s) on the enzyme. Results from substrate protection experiments are most consistent with inhibition of DNA polymerase activity by PLP binding to either one of two sites. One site (PLP site 1) can be protected from PLP inhibition by any nucleoside triphosphate in the absence or presence of template-primer, suggesting that PLP site 1 defines a nucleotide-binding site which is important for DNA polymerase activity but which is distinct from the DNA polymerase active site. PLP also inhibits DNA primase activity of the DNA polymerase alpha complex, and primase activity can be protected from PLP inhibition by nucleotide alone, arguing that PLP site 1 lies within the DNA primase active site. The second inhibitory PLP-binding site (PLP site 2) is only protected from PLP inhibition when the enzyme is bound to both template-primer and correct dNTP in a stable ternary complex. Since binding of PLP at site 2 is mutually exclusive with template-directed dNTP binding at the DNA polymerase active site, PLP site 2 appears to define the dNTP binding domain of the active site. Results from initial velocity analysis of PLP inhibition argue that there is a rate-limiting step in the polymerization cycle during product release and/or translocation.  相似文献   

6.
Two forms of DNA polymerase alpha, alpha 1 and alpha 2, have been partially purified from mouse FM3A cells by discriminating one form from the other on the basis of the association of primase activity. The primase activity in the most purified alpha 1 fraction co-sedimented with the DNA polymerase activity in a glycerol gradient, and almost no primase activity was detected in the most purified alpha 2 fraction. The primase activity associated with DNA polymerase alpha was assayed indirectly by measuring ATP-dependent DNA synthesis with poly (dT) as template. Characterization of the assay system was performed with the purified alpha 1. The system was absolutely dependent on the presence of ATP and a divalent cation. Mn2+ was much more effective than Mg2+, and 5-fold higher activity was observed with Mn2+ than with Mg2+ at their optimal concentrations. The primase activity assayed by the above system showed sensitivity to (NH4)2SO4 very similar to that of free primase reported by Tseng and Ahlem (J. Biol. Chem. 258, 9845-9849, 1983). The activity was inhibited by more than 50% by 20 mM (NH4)2SO4. alpha 1 and alpha 2 were very similar as DNA polymerases in their sensitivity to several inhibitors and their preference for template-primers, except that alpha 1 had a slightly greater preference for poly (dT) X (rA)10 than alpha 2 did. The major difference between the two forms was observed in their S values, 8.2 and 6.4 S for alpha 1 and alpha 2, respectively.  相似文献   

7.
Four monoclonal antibodies against chicken DNA polymerase alpha were obtained from mouse hybridomas (see ref. 1). Two of them, 4-2D and 4-8H, recognized different epitopes of the DNA polymerase alpha-DNA primase complex as determined by a competitive enzyme-linked immunosorbent assay. Antibody 4-8H partially (about 30%) neutralized the combined activity of primase-DNA polymerase alpha as well as the DNA polymerase alpha activity. In contrast, antibody 4-2D did not neutralize DNA polymerase alpha activity, but neutralized the primase-DNA polymerase alpha activity extensively (up to 80%). Furthermore, although an immunoaffinity column made with 4-8H antibody retained virtually all of the DNA polymerase alpha with and without associated primase, a column made with 4-2D antibody did not bind DNA polymerase alpha without the primase, but retained the enzyme associated with the primase. These results indicate that 4-8H monoclonal antibody is specific for DNA polymerase alpha and 4-2D monoclonal antibody is specific for the primase or a special structure present in the primase-DNA polymerase alpha complex.  相似文献   

8.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

9.
J M Collins  A K Chu 《Biochemistry》1987,26(18):5600-5607
It is well-known that there are multiple forms of DNA polymerase alpha. In order to determine which form(s) is (are) tightly bound, the activities were dissociated from DNA-poor nuclear matrices, with octyl beta-D-glucoside. Sucrose gradient sedimentation analysis revealed three bands with s values of 7.5, 10.5, and 13. The 7.5S form was free of DNA primase and represented only 10% of the total DNA polymerase alpha bound to the nuclear matrix. The 13S and the 10.5S forms each contained DNA primase activity. The 10.5S form comprised 85% of the DNA polymerase alpha activity and 95% of the DNA primase activity, dissociated from the nuclear matrix. Neither temperature of nuclease digestion nor various salt treatments of nuclei had significant effects on the proportions of DNA polymerase alpha and DNA primase activities bound to, or subsequently dissociated from, nuclear matrices. In a comparison of primase activity bound to the nuclear matrix, dissociated from the nuclear matrix, and in the soluble fraction, it was found that the bound activity had a lower ATP dependence, had less KCl inhibition, and was less sensitive to heat, compared to the dissociated and soluble activities. No differences in Mg2+ or pH dependence were noted. The amounts of DNA polymerase alpha and DNA primase activities bound to the nuclear matrix varied over the cell cycle of synchronized cells. Over the S phase, there were two peaks of matrix-bound DNA primase and two peaks of subsequently dissociated DNA polymerase alpha-DNA primase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
9-beta-D-Arabinofuranosyladenosine triphosphate (araATP) is a potent inhibitor of DNA primase. Primase readily incorporates araATP into primers, and primers containing araAMP are then elongated by DNA polymerase alpha (pol alpha) upon addition of dNTPs. AraATP did not inhibit utilization of primers under conditions where the ability of pol alpha to elongate primers was independent of the dATP concentration. The fraction of primers elongated by pol alpha was reduced by araATP only when elongation was dependent upon the dATP concentration. When the Ki for primase was measured in terms of the inhibition of the synthesis of primers that can be utilized by pol alpha, we obtained Ki = 2.7 microM (37 degrees C) and 2.0 microM (25 degrees C). Inhibition was competitive with ATP. Inhibition of pol alpha activity by araATP was measured under conditions where primase-catalyzed primer synthesis was required for the pol alpha activity. The decreased pol alpha activity was due to primase inhibition, and at constant dATP, araATP inhibition was competitive with ATP and gave Ki = 1.2 microM, similar to the Ki for primase alone. Increasing the dATP concentration had no effect on inhibition. In combination with previously reported in vivo data, we conclude that DNA primase is the primary in vivo target of the arabinofuranosyl nucleotides, not pol alpha.  相似文献   

11.
We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rather than delta-like) nature of the DNA polymerase. Using a poly(dT) template, the primase-devoid DNA polymerase alpha species elongated an oligo(rA10) primer up to 51-fold more effectively than an oligo(dA10) primer. In direct contrast, the DNA polymerase DNA primase alpha complex showed only a 4.6-fold preference for oligoribonucleotide primers at the same template/primer ratio. The catalytic differences between the two DNA polymerase alpha species were most dramatic at a template/primer ratio of 300. The primase-devoid DNA polymerase alpha species was found at high levels throughout oocyte and embryonic development. This suggests that the primase-devoid DNA polymerase alpha species could play a physiological role during DNA chain elongation in vivo, even if it is chemically related to DNA polymerase DNA primase alpha.  相似文献   

12.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus and that the ribonucleotide-dependent DNA synthesis is more sensitive to araCTP than DNA-primed DNA synthesis (Yoshida, S., et al. (1983) Biochim. Biophys. Acta 741, 348-357). Here we measured DNA primase activity using poly(dT) template or M13 bacteriophage single-stranded DNA template and primer RNA synthesis was coupled to the reaction by Escherichia coli DNA polymerase I Klenow fragment. By this method, the primer RNA synthesis can be measured independently of the associating DNA polymerase alpha. Using poly(dT) template, it was found that arabinosyladenine 5'-triphosphate (araATP) strongly inhibited DNA primase in competition with rATP. The apparent Ki for araATP was 21 microM and the ratio of Ki/Km (for rATP) was as low as 0.015. With poly(dI, dT) or M13 DNA, it was shown that araCTP also inhibited DNA primase in the similar manner. Product analysis using [alpha-32P]rATP showed that araATP inhibited the elongation of primer RNA. However, it is not likely that arabinosylnucleotides act as chain-terminators, since incubation of primer RNA with araATP did not abolish its priming activity. From these results, it is suggested that arabinosylnucleotide inhibits the initiation as well as elongation of Okazaki fragments in mammalian cells.  相似文献   

13.
14.
15.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

16.
The photoaffinity analogs 2-azidoadenosine 5'-tri(di)-phosphate (2-N3AT(D)P) and 8-azidoadenosine 5'-triphosphate (8-N3ATP) have been used to probe the substructural organization of the nucleotide binding pockets within the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both 2-N3ATP and 8-N3ATP are competitive inhibitors of dynein ATP hydrolysis, and both analogs are themselves hydrolyzed by the alpha-beta dimer. Following vanadate-dependent photolysis at the V1 site (by UV irradiation in the presence of Mg2+, ATP, and vanadate), both probes exclusively labeled the larger fragment from the alpha chain. In contrast, within the beta chain the predominant insertion sites for the two analogs were located on opposite sides of the V1 site. Therefore, the hydrolytic pockets of these two molecules have different substructures. Vanadate-dependent photolysis of the alpha and beta chains at the V2 sites (by UV irradiation in the presence of vanadate and Mn2+) profoundly affected the predominant modification sites; for example, following photolysis at the V2a site neither fragment of the alpha chain was photolabeled by 2-N3ATP or 8-N3ATP. Based on the photolabeling patterns obtained, the single V2 site within the beta chain is predicted to be analogous to the V2b site within the alpha chain. The results support the hypothesis that the V2 sites occur within the ATP binding pockets, and indicate that these functional domains are composed of portions of the heavy chains which are linearly separated by up to at least 100,000 daltons. Thus, the central region of each dynein heavy chain must be extensively folded so as to bring the widely separated photocleavage and photolabeling sites together within a single catalytic unit.  相似文献   

17.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

18.
Characterization of a DNA primase from rat liver mitochondria   总被引:2,自引:0,他引:2  
A DNA primase was partially purified from rat liver mitochondria and separated from the bulk of DNA polymerase gamma and mtRNA polymerase by heparin-agarose chromatography. The primase was distinguished from mtRNA polymerase by its response to pH, monoand divalent cations, and ATP concentrations. In the absence of an active DNA polymerase and using poly(dT) as template, primase synthesized mixed polynucleotide products consisting of units of oligo(A) 1-12 alternating with units of oligo(dA)25-40. Contributions to these products by contaminating DNA polymerase gamma were eliminated by the addition of dideoxy-ATP. Addition of 50 microM dATP to the primase reaction caused a 50% inhibition of AMP incorporation as compared to reactions containing low levels of dATP present only as a contaminant of the ATP added. The inhibition was due primarily to a reduction of new chain initiations. The dATP did not "lock" the primase reaction into the DNA mode of synthesis since the proportion of internal and 3'-terminal RNA segments was little affected. However, the addition of both 50 microM dATP and exogenous DNA polymerase to the primase reaction greatly reduced the amount of internal and 3'-terminal RNA segments, presumably due to the displacement of primase by DNA polymerase. Our data are consistent with the hypothesis (Hu, S.-Z., Wang, T.S.-F., and Korn, D. (1984) J. Biol. Chem. 259, 2602-2609) that the physiologically significant primer is a mixed 5'-oligoribonucleotide-3'-oligodeoxyribonucleotide and that the formation of the RNA to DNA junction is inherently a primase function.  相似文献   

19.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

20.
A Y Woody  C R Vader  R W Woody  B E Haley 《Biochemistry》1984,23(13):2843-2848
A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号