首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

2.
To determine the role of opioids in modulating the ventilatory response to moderate or severe hypoxia, we studied ventilation in six chronically instrumented awake adult dogs during hypoxia before and after naloxone administration. Parenteral naloxone (200 micrograms/kg) significantly increased instantaneous minute ventilation (VT/TT) during severe hypoxia, (inspired O2 fraction = 0.07, arterial PO2 = 28-35 Torr); however, consistent effects during moderate hypoxia (inspired O2 fraction = 0.12, arterial PO2 = 40-47 Torr) could not be demonstrated. Parenteral naloxone increased O2 consumption (VO2) in severe hypoxia as well. Despite significant increases in ventilation post-naloxone during severe hypoxia, arterial blood gas tensions remained the same. Control studies revealed that neither saline nor naloxone produced a respiratory effect during normoxia; also the preservative vehicle of naloxone induced no change in ventilation during severe hypoxia. These data suggest that, in adult dogs, endorphins are released and act to restrain ventilation during severe hypoxia; the relationship between endorphin release and moderate hypoxia is less consistent. The observed increase in ventilation post-naloxone during severe hypoxia is accompanied by an increase in metabolic rate, explaining the isocapnic response.  相似文献   

3.
The purpose of this study was to determine whether pulmonary venous pressure increases during alveolar hypoxia in lungs of newborn pigs. We isolated and perfused with blood the lungs from seven newborn pigs, 6-7 days old. We maintained blood flow constant at 50 ml.min-1.kg-1 and continuously monitored pulmonary arterial and left atrial pressures. Using the micropuncture technique, we measured pressures in 10 to 60-microns-diam venules during inflation with normoxic (21% O2-69-74% N2-5-10% CO2) and hypoxic (90-95% N2-5-10% CO2) gas mixtures. PO2 was 142 +/- 21 Torr during normoxia and 20 +/- 4 Torr during hypoxia. During micropuncture we inflated the lungs to a constant airway pressure of 5 cmH2O and kept left atrial pressure greater than airway pressure (zone 3). During hypoxia, pulmonary arterial pressure increased by 69 +/- 24% and pressure in small venules increased by 40 +/- 23%. These results are similar to those obtained with newborn lambs and ferrets but differ from results with newborn rabbits. The site of hypoxic vasoconstriction in newborn lungs is species dependent.  相似文献   

4.
Time-dependent effect of hypoxia on carotid body chemosensory function   总被引:4,自引:0,他引:4  
The time-dependent effects of hypoxia on the discharge rate carotid chemoreceptors were measured in anesthetized cats. Hypoxic exposure of two different durations were used: a short-term exposure (2-3 h) was used to measure the response of the same carotid chemoreceptors; and a long-term exposure (28 days at inspired PO2 of 70 Torr) to study carotid chemoreceptor properties in one group of cats relative to those of a control group. In the chronically hypoxic and control groups, determinations were made of the 1) steady-state responses to four levels of arterial PO2 (PaO2) at constant levels of arterial PCO2; 2) steady-state responses to acute hypercapnia during hyperoxia; and 3) maximal discharge rates during anoxia. We found that the acute responses of carotid chemoreceptor afferents to a given level of hypoxia (PaO2 = 30-40 Torr) did not significantly change within 2-3 h. After long-term exposure the carotid chemoreceptor responses to hypoxia significantly increased, with no significant changes in the hypercapnic response and in the maximal discharge rate during anoxia. We conclude that isocapnic hypoxia may not elicit a sufficient cellular response within 2-3 h in the cat carotid body to sensitize the O2 responsive mechanism, but hypoxia of longer duration will sensitize such a mechanism, thereby augmenting the chemosensory activity.  相似文献   

5.
Because small pulmonary arteries are believed to be the major site of hypoxic pulmonary vasoconstriction (HPV), pulmonary venular responses to hypoxia have received little attention. Therefore the responses of isolated guinea pig pulmonary venules to hypoxia (bath PO2, 25 Torr) and anoxia (bath PO2, 0 Torr) were characterized. Pulmonary venules [effective lumen radius (ELR), 116 +/- 2 microns] with an adherent layer of parenchyma responded to hypoxia and anoxia with a graded sustained contraction (hypoxia, 0.03 +/- 0.01; anoxia, 0.26 +/- 0.03 mN/mm), whereas paired femoral venules (ELR, 184 +/- 7 microns) contracted to anoxia only (0.05 +/- 0.02 mN/mm). Repeated challenges with hypoxia and anoxia continued to elicit sustained pulmonary venular contractions; femoral venule contractions to anoxia were not repeatable. Hypoxia- and anoxia-induced pulmonary venular contractions were calcium and pH dependent. Dissection of the parenchyma from pulmonary venules did not alter contractions to decreased PO2. Anoxic contractions of pulmonary venules were variably reduced by replacement of the bath fluid; however, the release of a contractile mediator(s) from pulmonary venules during hypoxia or anoxia was not demonstrated. Pulmonary venular responses to hypoxia and anoxia are similar to those induced by hypoxia in vivo, and results obtained from this model may be useful in predicting mechanisms of HPV.  相似文献   

6.
The purpose of this study was twofold: one concerns carotid blood flow and tissue PO2 and the other the effect of chronic hypoxic hypoxia on enhanced catecholamine content. The rationale was that chronic CO inhalation would not mimic the effect of hypoxia on the carotid body if its tissue blood flow is sufficiently high to counteract the effect of CO on O2 delivery and, hence, on tissue PO2. The differential effects of CO on the carotid body and erythropoietin-producing tissue would also indicate that the effect of hypoxic hypoxia on the carotid body is the result of a direct action of a local low O2 stimulus rather than secondary to a systemic effect initiated by other O2-sensing tissues. To test these alternatives we studied the effects of chronic CO inhalation on carotid body catecholamine content and hematocrit in the rats, which were exposed to an inspired PCO of 0.4-0.5 Torr at an inspired PO2 of approximately 150 Torr for 22 days. The hematocrit of CO-exposed rats was 75 +/- 1.1% compared with 48 +/- 0.7% in controls. Dopamine and norepinephrine content of the carotid bodies (per pair) was 5.88 +/- 0.91 and 3.02 +/- 0.19 ng, respectively, in the CO-exposed rats compared with 6.20 +/- 1.0 and 3.29 +/- 0.6 ng, respectively, in the controls. Protein content of the carotid bodies (per pair) was 18.4 +/- 1.6 and 20.5 +/- 0.9 micrograms, respectively. Thus, despite a vigorous erythropoietic response, the CO-exposed rats failed to show any significant stimulation of carotid body in terms of the content of either catecholamine or protein. The results suggest that carotid body tissue PO2 is not compromised by moderate carboxyhemoglobinemia because of its high tissue blood flow and that the chronic effect of hypoxic hypoxia on carotid body is direct.  相似文献   

7.
Oxygen transport to exercising leg in chronic hypoxia   总被引:4,自引:0,他引:4  
Residence at high altitude could be accompanied by adaptations that alter the mechanisms of O2 delivery to exercising muscle. Seven sea level resident males, aged 22 +/- 1 yr, performed moderate to near-maximal steady-state cycle exercise at sea level in normoxia [inspired PO2 (PIO2) 150 Torr] and acute hypobaric hypoxia (barometric pressure, 445 Torr; PIO2, 83 Torr), and after 18 days' residence on Pikes Peak (4,300 m) while breathing ambient air (PIO2, 86 Torr) and air similar to that at sea level (35% O2, PIO2, 144 Torr). In both hypoxia and normoxia, after acclimatization the femoral arterial-iliac venous O2 content difference, hemoglobin concentration, and arterial O2 content, were higher than before acclimatization, but the venous PO2 (PVO2) was unchanged. Thermodilution leg blood flow was lower but calculated arterial O2 delivery and leg VO2 similar in hypoxia after vs. before acclimatization. Mean arterial pressure (MAP) and total peripheral resistance in hypoxia were greater after, than before, acclimatization. We concluded that acclimatization did not increase O2 delivery but rather maintained delivery via increased arterial oxygenation and decreased leg blood flow. The maintenance of PVO2 and the higher MAP after acclimatization suggested matching of O2 delivery to tissue O2 demands, with vasoconstriction possibly contributing to the decreased flow.  相似文献   

8.
High hemoglobin affinity for O2 [low PO2 at 50% saturation of hemoglobin (P50)] could degrade exercise performance in normoxia by lowering mean tissue PO2 but could enhance O2 transport in hypoxic exercise by increasing arterial O2 saturation. We measured O2 transport at rest and at graded levels of steady-state exercise in tracheostomized dogs with normal P50 (28.8 +/- 1.8 Torr) and again after P50 was lowered (19.5 +/- 0.7 Torr) by sodium cyanate infusions. Measurements were made during ventilation with room air (RA), 12% O2 in N2, or 10% O2 in N2. Cardiac output (QT) as a function of O2 consumption (VO2) was not altered by low P50 at any inspired O2 fraction (P greater than 0.05). With RA exercise, arterial content (CaO2) and O2 delivery (QT X CaO2) were unchanged at low P50, whereas mixed venous PO2 was reduced at each level of VO2. With exercise in hypoxia, CaO2 and O2 delivery were significantly improved at low P50 (P less than 0.05). Mixed venous PO2 was lower than control during 12% O2 (P less than 0.05) but not different from control during 10% O2 exercise at low P50. Despite a presumed decrease in tissue PO2 during RA and 12% O2 exercise, exercise performance and base excess decline were not significantly worse than control levels. We conclude that, in canine steady-state exercise, hemoglobin P50 is not an important determinant of tissue O2-extraction capacity during normoxia or moderate hypoxia. In extreme hypoxia, low P50 may help to maintain tissue PO2 by enhancing systemic O2 delivery at each level of QT.  相似文献   

9.
Energy state and vasomotor tone in hypoxic pig lungs   总被引:3,自引:0,他引:3  
To evaluate the role of energy state in pulmonary vascular responses to hypoxia, we exposed isolated pig lungs to decreases in inspired PO2 or increases in perfusate NaCN concentration. Lung energy state was assessed by 31P nuclear magnetic resonance spectroscopy or measurement of adenine nucleotides by high-pressure liquid chromatography in freeze-clamped biopsies. In ventilated lungs, inspired PO2 of 200 (normoxia), 50 (hypoxia), and 0 Torr (anoxia) did not change adenine nucleotides but resulted in steady-state pulmonary arterial pressure (Ppa) values of 15.5 +/- 1.4, 30.3 +/- 1.8, and 17.2 +/- 1.9 mmHg, respectively, indicating vasoconstriction during hypoxia and reversal of vasoconstriction during anoxia. In degassed lungs, similar changes in Ppa were observed; however, energy state deteriorated during anoxia. An increase in perfusate NaCN concentration from 0 to 0.1 mM progressively increased Ppa and did not alter adenine nucleotides, whereas 1 mM reversed this vasoconstriction and caused deterioration of energy state. These results suggest that 1) pulmonary vasoconstrictor responses to hypoxia or cyanide occurred independently of whole lung energy state, 2) the inability of the pulmonary vasculature to sustain hypoxic vasoconstriction during anoxia might be associated with decreased energy state in some lung compartment, and 3) atelectasis was detrimental to whole lung energy state.  相似文献   

10.
We utilized selective carotid body (CB) perfusion while changing inspired O2 fraction in arterial isocapnia to characterize the non-CB chemoreceptor ventilatory response to changes in arterial PO2 (PaO2) in awake goats and to define the effect of varying levels of CB PO2 on this response. Systemic hyperoxia (PaO2 greater than 400 Torr) significantly increased inspired ventilation (VI) and tidal volume (VT) in goats during CB normoxia, and systemic hypoxia (PaO2 = 29 Torr) significantly increased VI and respiratory frequency in these goats. CB hypoxia (CB PO2 = 34 Torr) in systemic normoxia significantly increased VI, VT, and VT/TI; the ventilatory effects of CB hypoxia were not significantly altered by varying systemic PaO2. We conclude that ventilation is stimulated by systemic hypoxia and hyperoxia in CB normoxia and that this ventilatory response to changes in systemic O2 affects the CB O2 response in an additive manner.  相似文献   

11.
Effect of physical training on the capacity to secrete epinephrine   总被引:5,自引:0,他引:5  
Epinephrine responses to hypoglycemia and to identical relative work loads have been shown to be higher in endurance-trained athletes than in untrained subjects. To test the hypothesis that training increases the adrenal medullary secretory capacity, we studied the effects of glucagon (1 mg/70 kg iv), acute hypercapnia (inspired O2 fraction = 7%), and acute hypobaric hypoxia (inspired Po2 = 87 Torr), respectively, on the epinephrine concentration in arterialized hand vein blood in eight endurance-trained athletes [T, O2 uptake = 66 (62-70) ml.min-1.kg-1] and seven sedentary males [C, O2 uptake = 46 (41-50)]. In response to identical increments in glucagon concentrations, plasma epinephrine increased more in T than in C subjects [0.87 +/- 0.11 vs. 0.38 +/- 0.14 (SE) nmol/l, P less than 0.05]. In response to hypercapnia [arterial PCO2 = 56 +/- 0.7 Torr (T) and 55 +/- 0.4 (C), P greater than 0.05], the increment in epinephrine was significant in T (0.38 +/- 0.11 nmol/l) but not (P less than 0.1) in C subjects (0.22 +/- 0.11). Hypoxia [arterial PO2 = 42 +/- 2 Torr (T) and 41 +/- 2 (C), P greater than 0.05] increased epinephrine in T (0.22 +/- 0.10 nmol/l, P less than 0.05) but not in C subjects (0.01 +/- 0.07). The plasma norepinephrine concentration never changed, whereas heart rate always increased, the increase being higher (P less than 0.05) in T than in C subjects only during hypercapnia. The results indicate that training increases the capacity to secrete epinephrine.  相似文献   

12.
Systemic hypoxia, produced by lowering inspired Po2, induces a rapid inflammation in several microcirculations, including cremaster muscle. Mast cell activation is a necessary element of this response. Selective reduction of cremaster microvascular Po2 (PmO2) with normal systemic arterial Po2 (PaO2; cremaster hypoxia/systemic normoxia), however, does not elicit increased leukocyte-endothelial adherence (LEA) in cremaster venules. This could be due to a short time of leukocyte exposure to the hypoxic cremaster environment. Conversely, LEA increases when PaO2 is lowered, while cremaster PmO2 remains high (cremaster normoxia/systemic hypoxia). An alternative explanation of these results is that a mediator released from a central site during systemic hypoxia initiates the inflammatory cascade. We hypothesized that if this is the case, cremaster mast cells would be activated during cremaster normoxia/systemic hypoxia, but not during cremaster hypoxia/systemic normoxia. The microcirculation of rat cremaster muscles was visualized by using intravital microscopy. Cremaster PmO2 was measured with a phosphorescence quenching method. Cremaster hypoxia/systemic normoxia (PmO2 7 +/- 1 Torr, PaO2 87 +/- 2 Torr) did not increase LEA; however, topical application of the mast cell activator compound 48/80 under these conditions did increase LEA. The effect of compound 48/80 on LEA was blocked by topical cromolyn, a mast cell stabilizer. LEA increased during cremaster normoxia/systemic hypoxia, (PmO2 64 +/- 5 Torr, PaO2 33 +/- 2 Torr); this increase was blocked by topical cromolyn. The results suggest that mast cell stimulation occurs only when PaO2 is reduced, independent of cremaster PmO2, and support the idea of a mediator that is released during systemic hypoxia and initiates the inflammatory cascade.  相似文献   

13.
To investigate CO effects on brain oxygenation, graded carboxyhemoglobinemia (HbCO) was produced in nine unanesthetized fetal sheep by infusing CO-laden erythrocytes in exchange for fetal blood. For the 1st h after this procedure, the mean fetal carboxyhemoglobin levels were 16.5 +/- 0.4% [control (C) = 1.4 +/- 0.4%] for mild HbCO, 22.7 +/- 0.6% (C = 1.8 +/- 0.4%) for moderate HbCO, and 27.8 +/- 0.5% (C = 2.1 +/- 0.7%) for severe HbCO. This induction of HbCO significantly reduced mean preductal arterial PO2 values to 4.3 Torr below control for mild HbCO, 4.6 Torr below control for moderate HbCO, and 5.5 Torr below control for severe HbCO. The respective arterial O2 contents were decreased by 17, 21, and 29%. Mean arterial pH was lowered only during severe HbCO, and arterial PCO2 values were unchanged. HbCO produced a fetal tachycardia. Mean arterial blood pressure was only increased during severe HbCO. The incidences of rapid eye movements and breathing activity were decreased by HbCO in a dose-dependent manner. When related to calculated brain tissue PO2, these decreases were similar to those measured during hypoxic hypoxia and anemia, suggesting that carboxyhemoglobin effects result solely from diminished oxygenation. It is concluded that 1) the peripheral arterial chemoreceptors in the fetus apparently have little effect on hypoxic inhibition of breathing and 2) the carboxyhemoglobin concentrations required to inhibit fetal breathing are greater than those likely to be encountered clinically.  相似文献   

14.
Systemic O2 transport during maximal exercise at different inspired PO2 (PIO2) values was studied in sodium cyanate-treated (CY) and nontreated (NT) rats. CY rats exhibited increased O2 affinity of Hb (exercise O2 half-saturation pressure of Hb = 27.5 vs. 42.5 Torr), elevated blood Hb concentration, pulmonary hypertension, blunted hypoxic pulmonary vasoconstriction, and normal ventilatory response to exercise. Maximal rate of convective O2 transport was higher and tissue O2 extraction was lower in CY than in NT rats. The relative magnitude of these opposing changes, which determined the net effect of cyanate on maximal O2 uptake (VO2 max), varied at different PIO2: VO2 max (ml. min-1. kg-1) was lower in normoxia (72.8 +/- 1.9 vs. 81. 1 +/- 1.2), the same at 70 Torr PIO2 (55.4 +/- 1.4 vs. 54.1 +/- 1.4), and higher at 55 Torr PIO2 (48 +/- 0.7 vs. 40.4 +/- 1.9) in CY than in NT rats. The beneficial effect of cyanate on VO2 max at 55 Torr PIO2 disappeared when Hb concentration was lowered to normal. It is concluded that the effect of cyanate on VO2 max depends on the relative changes in blood O2 convection and tissue O2 extraction, which vary at different PIO2. Although uptake of O2 by the blood in the lungs is enhanced by cyanate, its release at the tissues is limited, probably because of a reduction in the capillary-to-tissue PO2 diffusion gradient secondary to the increased O2 affinity of Hb.  相似文献   

15.
Carotid chemoreceptor activity during acute and sustained hypoxia in goats   总被引:6,自引:0,他引:6  
The role of carotid body chemoreceptors in ventilatory acclimatization to hypoxia, i.e., the progressive, time-dependent increase in ventilation during the first several hours or days of hypoxic exposure, is not well understood. The purpose of this investigation was to characterize the effects of acute and prolonged (up to 4 h) hypoxia on carotid body chemoreceptor discharge frequency in anesthetized goats. The goat was chosen for study because of its well-documented and rapid acclimatization to hypoxia. The response of the goat carotid body to acute progressive isocapnic hypoxia was similar to other species, i.e., a hyperbolic increase in discharge as arterial PO2 (PaO2) decreased. The response of 35 single chemoreceptor fibers to an isocapnic [arterial PCO2 (PaCO2) 38-40 Torr)] decrease in PaO2 of from 100 +/- 1.7 to 40.7 +/- 0.5 (SE) Torr was an increase in mean discharge frequency from 1.7 +/- 0.2 to 5.8 +/- 0.4 impulses. During sustained isocapnic steady-state hypoxia (PaO2 39.8 +/- 0.5 Torr, PaCO2, 38.4 +/- 0.4 Torr) chemoreceptor afferent discharge frequency remained constant for the first hour of hypoxic exposure. Thereafter, single-fiber chemoreceptor afferents exhibited a progressive, time-related increase in discharge (1.3 +/- 0.2 impulses.s-1.h-1, P less than 0.01) during sustained hypoxia of up to 4-h duration. These data suggest that increased carotid chemoreceptor activity contributes to ventilatory acclimatization to hypoxia.  相似文献   

16.
We studied the effect of systemic hypoxia on the bronchial vascular pressure-flow relationship in anesthetized ventilated sheep. The bronchial artery, a branch of the bronchoesophageal artery, was cannulated and perfused with a pump with blood from a femoral artery. Bronchial blood flow was set so bronchial arterial pressure approximated systemic arterial pressure. For the group of 25 sheep, control bronchial blood flow was 22 ml/min or 0.7 ml.min-1.kg-1. During the hypoxic exposure, animals were ventilated with a mixture of N2 and air to achieve an arterial PO2 (PaO2) of 30 or 45 Torr. For the more severe hypoxic challenge, bronchial vascular resistance (BVR), as determined by the slope of the linearized pressure-flow curve, decreased acutely from 3.8 +/- 0.4 mmHg.ml-1.min to 2.9 +/- 0.3 mmHg.ml-1.min after 5 min of hypoxia. However, this vasodilation was not sustained, and BVR measured at 30 min of hypoxia was 4.2 +/- 0.8 mmHg.ml-1.min. The zero flow intercept, an index of downstream pressure, remained unaltered during the hypoxic exposure. Under conditions of moderate hypoxia (PaO2 = 45 Torr), BVR decreased from 4.6 +/- 0.3 to 3.8 +/- 0.4 mmHg.ml-1.min at 5 min and remained dilated at 30 min (3.6 +/- 0.5 mmHg.ml-1.min). To determine whether dilator prostaglandins were responsible for the initial bronchial vascular dilation under conditions of severe hypoxia (PaO2 approximately equal to 30 Torr), we studied an additional group of animals with pretreatment with the cyclooxygenase inhibitors indomethacin (2 mg/kg) and ibuprofen (12.5 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objectives of these experiments were 1) to describe the effect of maximum treadmill exercise on gas exchange, arterial blood gases, and arterial blood oxygenation in rats acclimated for 3 wk to simulated altitude (SA, barometric pressure 370-380 Torr) and 2) to determine the contribution of acid-base changes to the changes in arterial blood oxygenation of hypoxic exercise. Maximum O2 uptake (VO2max) was measured in four groups of rats: 1) normoxic controls run in normoxia (Nx), 2) normoxic controls run in acute hypoxia [AHx inspiratory PO2 (PIO2) approximately 70 Torr], 3) SA rats run in hypoxia (3WHx, PIO2 approximately 70 Torr), and 4) SA rats run in normoxia (ANx). VO2max (ml STPD.min-1.kg-1) was 70.8 +/- 0.9 in Nx, 46.4 +/- 1.9 in AHx, 52.6 +/- 1.1 in 3WHx, and 70.0 +/- 2.4 in ANx. Exercise resulted in acidosis, hypocapnia, and elevated blood lactate in all groups. Although blood lactate increased less in 3WHx and ANx, pH was the same or lower than in Nx and AHx, reflecting the low buffer capacity of SA. In AHx and 3WHx, arterial PO2 increased with exercise; however, O2 saturation of hemoglobin in arterial blood (SaO2) decreased. In vitro measurements of the Bohr shift suggest that SaO2 decreased as a result of a decrease in hemoglobin O2 affinity. The data indicate that several features of hypoxic exercise in this model are similar to those seen in humans, with the exception of the mechanism of decrease in SaO2, which, in humans, appears to be due to incomplete alveolar-capillary equilibration.  相似文献   

18.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

19.
Pulmonary gas exchange was studied in eight normal subjects both before and after 2 wk of altitude acclimatization at 3,800 m (12,470 ft, barometric pressure = 484 Torr). Respiratory and multiple inert gas tensions, ventilation, cardiac output (Q), and hemoglobin concentration were measured at rest and during three levels of constant-load cycle exercise during both normoxia [inspired PO2 (PIO2) = 148 Torr] and normobaric hypoxia (PIO2 = 91 Torr). After acclimatization, the measured alveolar-arterial PO2 difference (A-aPO2) for any given work rate decreased (P less than 0.02). The largest reductions were observed during the highest work rates and were 24.8 +/- 1.4 to 19.7 +/- 0.8 Torr (normoxia) and 22.0 +/- 1.1 to 19.4 +/- 0.7 Torr (hypoxia). This could not be explained by changes in ventilation-perfusion inequality or estimated O2 diffusing capacity, which were unaffected by acclimatization. However, Q for any given work rate was significantly decreased (P less than 0.001) after acclimatization. We suggest that the reduction in A-aPO2 after acclimatization is a result of more nearly complete alveolar/end-capillary diffusion equilibration on the basis of a longer pulmonary capillary transit time.  相似文献   

20.
We tested the hypothesis that blood flow is distributed among capillary networks in resting skeletal muscle in such a manner as to maintain uniform end-capillary PO2. Oxygen tension in venules draining two to five capillaries was obtained by using the phosphorescence decay methodology in rat spinotrapezius muscle. For 64 postcapillary venules among 18 networks in 10 animals, the mean PO2 was 30.1 Torr (range, 9.7-43.5 Torr) with a coefficient of variation (CV; standard deviation/mean) of 0.26. Oxygen levels of postcapillary venules within a single network or single animal, however, displayed a much smaller CV (0.064 and 0.094, respectively). By comparison, the CV of blood flow in 57 postcapillary venules of 17 networks in 9 animals was 1.27 with a mean flow of 0.011 +/- 0.014 nl/s and a range of 3.7 x 10(-4) to 6.5 x 10(-2) nl/s. Blood flow of postcapillary venules within single networks displayed a lower CV (mean, 0.51), whereas that in individual animals was 0.78. Results indicate that among venular networks, heterogeneity of oxygen tension is less than that of blood flow and within venular networks the heterogeneity of oxygen tension is much less than that of blood flow. In addition, postcapillary PO2 was independent of flow among venules in which both were measured. Results of this study may be attributable to three factors: 1) O2 diffusion between adjacent capillaries and venules, 2) structural remodeling in regions of lower PO2, and 3) O2-dependent local control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号