共查询到20条相似文献,搜索用时 15 毫秒
1.
A new third-generation biosensor for H(2)O(2) assay was developed on the basis of the immobilization of horseradish peroxidase (HRP) in a nanocomposite film of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/multiwalled carbon nanotubes (MWCNTs) modified gold electrode. The prepared HRP/TTF-TCNQ/MWCNTs/Au electrode was used for the bioelectrocatalytic reduction of H(2)O(2), with a linear range from 0.005 to 1.05mM and a detection limit of 0.5muM for amperometric sensing of H(2)O(2). In addition, a novel method on the basis of electrochemical quartz crystal microbalance (EQCM) measurements was proposed to determine the effective enzymatic specific activity (ESA) of the immobilized HRP for the first time, and the ESA was found to be greater at the TTF-TCNQ/MWCNTs/Au electrode than that at the MWCNTs/Au or TTF-TCNQ/Au electrode, indicating that the TTF-TCNQ/MWCNTs film is a good HRP-immobilization matrix to achieve the direct electron transfer between the enzyme and the electrode. 相似文献
2.
An electrochemical biosensor for determination of hydrogen peroxide (H2O2) was fabricated, based on the electrostatic immobilization of horseradish peroxidase (HRP) with one-dimensional gold nanowires
(Au NWs) and TiO2 nanoparticles (nano-TiO2) on a gold electrode. The nano-TiO2 can give a biocompatible microenvironment and compact film, and the Au NWs can provide fast electron transferring rate and
greatly add the amount of HRP molecules immobilized on the electrode surface. Au NWs were characterized by ultraviolet–visible
spectra and transmission electron microscope. The electrode modification process was probed by cyclic voltammetry and electrochemical
impedance spectroscopy. Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. Under
optimal conditions, the linear range for the determination of H2O2 was from 2.3 × 10−6 to 2.4 × 10−3 M with a detection limit of 7.0 × 10−7 M (S/N = 3). Moreover, the proposed biosensor showed superior stability and high sensitivity. 相似文献
3.
Ferapontova EE Grigorenko VG Egorov AM Börchers T Ruzgas T Gorton L 《Biosensors & bioelectronics》2001,16(3):147-157
Four forms of horseradish peroxidase (HRP) have been used to prepare peroxidase-modified gold electrodes for mediatorless detection of peroxide: native HRP, wild type recombinant HRP, and two recombinant forms containing six-His tag at the C-terminus and at the N-terminus, respectively. The adsorption of the enzyme molecules on gold was studied by direct mass measurements with electrochemical quartz crystal microbalance. All the forms of HRP formed a monolayer coverage of the enzyme on the gold surface. However, only gold electrodes with adsorbed recombinant HRP forms exhibited high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct electron transfer between gold and HRP. The sensitivity of the gold electrodes modified with recombinant HRPs was in the range of 1.4-1.5 A M(-1) cm(-2) at -50 mV versus Agmid R:AgCl. The response to H(2)O(2) in the concentration range 0.1-40 microM was not dependent on the presence of a mediator (i.e. catechol) giving strong evidence that the electrode currents are diffusion limited. Lower detection limit for H(2)O(2) detection was 10 nM at the electrodes modified with recombinant HRPs. 相似文献
4.
An enzymeless biosensor was explored from Cu-Mg-Al calcined layered double hydroxide (CLDH) modified electrode in this study. The Cu-Mg-Al CLDH greatly promotes the electron transfer between H(2)O(2) and GCE, and it is exemplified toward the non-enzymatic sensing of H(2)O(2). The results indicate that the Cu-Mg-Al CLDH exhibits excellent electrocatalytic property, high sensitivity, good reproducibility, long-term stability, and fast amperometric response toward reduction of H(2)O(2), thus is promising for the future development of man-made mimics of enzyme in H(2)O(2) sensors. This work opens a way to utilize simply Cu-Mg-Al CLDH as an electron mediator to fabricate an efficient H(2)O(2) biosensor, which exhibits great potential applications in varieties of simple, robust, and easy-to-make analytical approaches in the future. 相似文献
5.
The chitosan with three-dimensional porous structure greatly increased the effective electrode surface for loading of platinum nanoparticles and promoted efficient electron transfer. The resulting biosensor had a response time (within 5 s) and a linear response from 6 μM to 4.2 mM glucose with a detection limit of 2 μM (S/N = 3). Moreover, the methodology can be applied for the immobilization of other enzymes. 相似文献
6.
A mediator-free phenol biosensor was developed. The low-isoelectric point tyrosinase was adsorbed on the surface of high-isoelectric point ZnO nanoparticles (nano-ZnO) facilitated by the electrostatic interactions and then immobilized on the glassy carbon electrode via the film forming by chitosan. It was found that the nano-ZnO matrix provided an advantageous microenvironment in terms of its favorable isoelectric point for tyrosinase loading and the immobilized tyrosinase retaining its activity to a large extent. Moreover, there is no need to use any other electron mediators. Phenolic compounds were determined by the direct reduction of biocatalytically generated quinone species at -200mV (vs. saturated calomel electrode). The parameters of the fabrication process and the various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady-state current within 10s, and the sensitivity was as high as 182microAmmol(-1)L. The linear range for phenol determination was from 1.5x10(-7) to 6.5x10(-5)molL(-1) with a detection limit of 5.0x 10(-8)molL(-1) obtained at a signal/noise ratio of 3. In addition, the apparent Michaelis-Menten constant (K(m)(app)) and the stability of the enzyme electrode were estimated. The performance of the developed biosensor was compared with that of biosensors based on other immobilization matrices. 相似文献
7.
Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor 总被引:1,自引:0,他引:1
A circulating-flow piezoelectric biosensor, based on an Au nanoparticle amplification and verification method, was used for real-time detection of a foodborne pathogen, Escherichia coli O157:H7. A synthesized thiolated probe (Probe 1; 30-mer) specific to E. coli O157:H7 eaeA gene was immobilized onto the piezoelectric biosensor surface. Hybridization was induced by exposing the immobilized probe to the E. coli O157:H7 eaeA gene fragment (104-bp) amplified by PCR, resulting in a mass change and a consequent frequency shift of the piezoelectric biosensor. A second thiolated probe (Probe 2), complementary to the target sequence, was conjugated to the Au nanoparticles and used as a "mass enhancer" and "sequence verifier" to amplify the frequency change of the piezoelectric biosensor. The PCR products amplified from concentrations of 1.2 x 10(2) CFU/ml of E. coli O157:H7 were detectable by the piezoelectric biosensor. A linear correlation was found when the E. coli O157:H7 detected from 10(2) to 10(6) CFU/ml. The piezoelectric biosensor was able to detect targets from real food samples. 相似文献
8.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility. 相似文献
9.
The direct electrochemistry of horseradish peroxidase (HRP) on a novel sensing platform modified glassy carbon electrode (GCE) has been achieved. This sensing platform consists of Nafion, hydrophilic room-temperature ionic liquid (RTIL) and Au nanoparticles dotted titanate nanotubes (GNPs-TNTs). The composite of RTIL and GNPs-TNTs was immobilized on the electrode surface through the gelation of a small amount of HRP aqueous solution. The composite was characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and infrared spectroscopy (IR). UV-Vis and IR spectroscopy demonstrated that HRP in the composite could retain its native secondary structure and biochemical activity. The HRP-immobilized electrode was investigated by cyclic voltammetry and chronoamperometry. The results from both techniques showed that the direct electron transfer between the nanocomposite modified electrodes and heme in HRP could be realized. The biosensor responded to H(2)O(2) in the linear range from 5×10(-6) to 1×10(-3) mol L(-1) with a detection limit of 2.1×10(-6) mol L(-1) (based on the S/N=3). 相似文献
10.
A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxidase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 micromoll(-1), and the linear range was from 10.0 micromoll(-1) to 7.0 mmoll(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the studied biosensor exhibited good current repeatability and good fabrication reproducibility. 相似文献
11.
12.
A new film for the fabrication of an unmediated H2O2 biosensor 总被引:2,自引:0,他引:2
A novel and stable film made from polyethylene glycol (PEG) on pyrolytic graphite (PG) electrode was presented in this paper for incorporating horseradish peroxidase (HRP) to study the direct electrochemistry of the enzyme. In PEG film, HRP showed a thin-layer electrochemistry behavior. The apparent standard potential (E degrees ') was -0.379 V versus SCE at pH 7.2. Moreover, the PEG-HRP modified electrode exhibited excellent electrocatalytical response to the reduction of H2O2 with a calibration range between 2.0 x 10(-6) and 6.0 x 10(-4) M and a good linear relation from 2.0 x 10(-6) to 1.0 x 10(-4) M, on which an unmediated H2O2 biosensor was based. The detection limit of 6.7 x 10(-7) M was estimated when the signal-to-noise ratio was 3. The relative standard deviation (R.S.D.) was 4.7% for six successive determinations at a concentration of 4.0 x 10(-5) M. The apparent Michaelis-Menten constant (Km app) of the sensor was found to be 1.38 mM. Epinephrine, dopamine, and ascorbic acid did not interfere with the sensitive determination of H2O2. 相似文献
13.
Cytochrome c was immobilized covalently onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline composite (NiO-NPs/cMWCNT/PANI) electrodeposited on gold (Au) electrode. An amperometric H2O2 biosensor was constructed by connecting this modified Au electrode along Ag/AgCl as reference and Pt wire as counter electrode to the galvanostat. The modified Au electrode was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR). Cyclic voltammetric (CV) studies of the electrode at different stages demonstrated that the modified Au electrode had enhanced electrochemical oxidation of H2O2, which offered a number of attractive features to develop an amperometric biosensor based on split of H2O2. There was a good linear relationship between the current (mA) and H2O2 concentration in the range 3–700 μM. The sensor had a detection limit of 0.2 μM (S/N = 3) with a high sensitivity of 3.3 mA μM?1 cm?2. The sensor gave accurate and satisfactory results, when employed for determination of H2O2 in different fruit juices. 相似文献
14.
Arya SK Prusty AK Singh SP Solanki PR Pandey MK Datta M Malhotra BD 《Analytical biochemistry》2007,363(2):210-218
Cholesterol oxidase (ChOx) has been covalently immobilized onto two-dimensional self-assembled monolayer (SAM) of N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPTS) deposited on the indium-tin oxide (ITO) coated glass plates using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) chemistry. These ChO x/AEAPTS/ITO bioelectrodes are characterized using contact angle (CA) measurements, UV-visible spectroscopy, atomic force microscopy (AFM), electrochemical impedance technique, and Fourier transform infrared (FT-IR) technique. The covalently immobilized ChOx-modified AEAPTS bioelectrodes are used for the estimation of cholesterol in solution using UV-visible technique. These cholesterol sensing bioelectrodes show linearity as 50 to 500 mg/dl for cholesterol solution, detection limit as 25mg/dl, sensitivity as 4.499 x 10(-5) Abs (mg/dl)(-1), K(m) value as 58.137 mg/dl (1.5mM), apparent enzyme activity as 1.81 x 10(-3) U cm(-2), shelf life of approximately 10 weeks, and electrode reusability as 10 times. 相似文献
15.
Gold nanoparticles (AuNPs) with an average diameter of 5nm were assembled on the surface of silver chloride@polyaniline (PANI) core-shell nanocomposites (AgCl@PANI). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) suggested that AuNPs were incorporated on AgCl@PANI through coordination bonds instead of electrostatic interaction. The resulting AuNPs-AgCl@PANI hybrid material exhibited good electroactivity at a neutral pH environment. An amperometric glucose biosensor was developed by adsorption of glucose oxidase (GOx) on an AuNPs-AgCl@PANI modified glassy carbon (GC) electrode. AuNPs-AgCl@PANI could provide a biocompatible surface for high enzyme loading. Due to size effect, the AuNPs in the hybrid material could act as a good catalyst for both oxidation and reduction of H(2)O(2). As the measurement of glucose was based on the electrochemical detection of H(2)O(2) generated by enzyme-catalyzed-oxidation of glucose, the biosensor exhibited a super highly sensitive response to the analyte with a detection limit of 4 pM. Moreover, the biosensor showed good reproducibility and operation stability. The effects of some factors, such as temperature and pH value, were also studied. 相似文献
16.
Rooma Devi Bhawna Batra Suman Lata Sandeep Yadav C.S. Pundir 《Process Biochemistry》2013,48(2):242-249
A method is described for construction of an amperometric xanthine biosensor based on covalent Immobilization of xanthine oxidase (XOD) onto citrate capped silver nanoparticles deposited on Au electrode surface through cysteine self assembled monolayers (SAM). The biosensor showed optimum response within 5 s at pH 7.0 and 35 °C, when polarized at 0.5 V vs. Ag/AgCl. The linear working range of biosensor for xanthine was from 2 to 16 μM, with a detection limit of 0.15 μM and sensitivity of 0.17 mA/μM/cm2. The mean analytical recovery of exogenously added xanthine in fish meat extract (5 g/l and 10 g/l) was 96.2 ± 2.3% and 95.2 ± 3.4%, respectively. Within and between batches coefficients of variation were <2.6% and <3.4%, respectively. The biosensor measured xanthine in fish, chicken, pork, and beef meat. The enzyme electrode lost 20% of its initial activity after its regular 180 uses over a period of 60 days, when stored at 4 °C in dry state. 相似文献
17.
Haifeng Zhou Dongjie Yang Xueqing Qiu Xiaolei Wu Yuan Li 《Applied microbiology and biotechnology》2013,97(24):10309-10320
Lignosulfonates(LSs), by-products from chemical pulping processes, are low-value products with limited dispersion properties. The ability of commercially available horseradish peroxidase (HRP) to polymerize LS macromolecules and improve the dispersion properties of LSs was investigated. The polymerization of LSs proceeded efficiently under mild reaction conditions in an aqueous solution with HRP/H2O2. Gel permeation chromatography showed a significant increase in weight-average molecular weight (M w ) of sulfonated kraft lignin and sodium lignosulfonate (NaLS) by 8.5-fold and 4.7-fold, respectively. The mechanism of polymerization was investigated by elemental analysis, surface charge measurement, headspace gas chromatography, infrared spectroscopy (IR), and hydrogen nuclear magnetic resonance spectrometry (1H-NMR). The functional group measurements indicated that HRP incubation did not reduce the sulfonic group content. However, it decreased the phenolic and methoxyl group contents. As the phenolic group content decreased, M w increased as a power function. The polymerization was proposed to involve the random coupling of phenoxy radical intermediates. The radicals coupled with each other to form different inter-unit linkages, most of which were the β-O-4’ type, as the 1H-NMR spectra indicated. Moreover, the HRP/H2O2 incubation induced a significant improvement in the adsorption and dispersion properties of LSs. Therefore, the HRP/H2O2 incubation is a promising approach for industrial applications of LSs. 相似文献
18.
Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode. 相似文献
19.
Asad S Torabi SF Fathi-Roudsari M Ghaemi N Khajeh K 《International journal of biological macromolecules》2011,48(4):566-570
Horseradish peroxidase (HRP) has attracted intense research interest due to its potential applications in biotechnological fields. However, inadequate stability under prevalent conditions such as elevated temperatures and H(2)O(2) exposure, has limited its industrial application. In this study, stability of HRP was investigated in the presence of different buffer systems (potassium phosphate and Tris-HCl) and additives. It was shown that the concentration of phosphate buffer severely affects enzyme thermostability in a way that in diluted potassium phosphate buffer (10mM) half-life (from 13 to 35 min at 80 °C) and T(m) (from 73 to 77.5 °C) increased significantly. Among additives tested, trehalose had the most thermostabilizing effect. Exploring the role of glycosylation in stabilizing effect of phosphate buffer, non-glycosylated recombinant HRP was also examined for its thermal and H(2)O(2) stability in both diluted and concentrated phosphate buffers. The recombinant enzyme was more thermally stable in diluted buffer in accordance to glycosylated HRP; but interestingly recombinant HRP showed higher H(2)O(2) tolerance in concentrated buffer. 相似文献
20.
Nagy JO Zhang Y Yi W Liu X Motari E Song JC Lejeune JT Wang PG 《Bioorganic & medicinal chemistry letters》2008,18(2):700-703
Shiga toxin-producing Escherichia coli organisms (STEC) were detected by Gal-alpha1,4-Gal glycopolydiacetylene (GPDA) nanoparticles through the selective binding between Shiga toxin and GPDA nanoparticles. The binding produced a colorimetric change in the absorption wavelength of the GPDA nanoparticles. This method provides a highly selective, rapid, sensitive, and quantitative approach for the detection of STEC. 相似文献