首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. J. Morré  M. Paulik  D. Nowack 《Protoplasma》1986,132(1-2):110-113
Summary Isolated fractions enriched in transition elements derived from part rough—part smooth regions of endoplasmic reticulum of rat liver respondin vitro to ATP plus a concentrated fraction of cytoplasmic proteins by formation of ca. 60 nm vesicles with nap-like coats resembling those of transition vesicles of the intact cell. Similar vesicles are normally considered to function in the transfer of materials from endoplasmic reticulum to cis elements of the Golgi apparatus.  相似文献   

2.
Preparations enriched in part-smooth (lacking ribosomes), part-rough (with ribosomes) transitional elements of the endoplasmic reticulum when incubated with ATP plus a cytosol fraction responded by the formation of blebbing profiles and approximately 60-nm vesicles. The 60-nm vesicles formed resembled closely transition vesicles in situ considered to function in the transfer of membrane materials between the endoplasmic reticulum and the Golgi apparatus. The transition elements following incubation with ATP and cytosol were resolved by preparative free-flow electrophoresis into fractions of differing electronegativity. The main fraction contained the larger vesicles of the transitional membrane elements, while a less electronegative minor shoulder fraction was enriched in the 60-nm vesicles. If the vesicles concentrated by preparative free-flow electrophoresis were from material previously radiolabeled with [3H]leucine and then added to Golgi apparatus immobilized to nitrocellulose, radioactivity was transferred to the Golgi apparatus membranes. The transfer was rapid (T1/2 of about 5 min), efficient (10-30% of the total radioactivity of the transition vesicle preparations was transferred to Golgi apparatus), and independent of added ATP but facilitated by cytosol. Transfer was specific and apparently unidirectional in that Golgi apparatus membranes were ineffective as donor membranes and endoplasmic reticulum vesicles were ineffective as recipient membranes. Using a heterologous system with transition vesicles from rat liver and Golgi apparatus isolated from guinea pig liver, coalescence of the small endoplasmic reticulum-derived vesicles with Golgi apparatus membranes was demonstrated using immunocytochemistry. Employed were polyclonal antibodies directed against the isolated rat transition vesicle preparations. When localized by immunogold procedures at the electron microscope level, regions of rat-derived vesicles were found fused with cisternae of guinea pig Golgi apparatus immobilized to nitrocellulose strips. Membrane transfer was demonstrated from experiments where transition vesicle membrane proteins were radioiodinated by the Bolton-Hunter procedure. Additionally, radiolabeled peptide bands not present initially in endoplasmic reticulum appeared following coalescence of the derived vesicles with Golgi apparatus. These bands, indicative of processing, required that both Golgi apparatus and transition vesicles be present and did not occur in incubated endoplasmic reticulum preparations or on nitrocellulose strips to which no Golgi apparatus were added.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Trafficking and sorting of lipids during transport from the endoplasmic reticulum to the Golgi apparatus was studied using a cell-free system from rat liver. Transitional elements of the endoplasmic reticulum were prepared from liver slices prelabeled with [14C]- or [3H]acetate as the donor fraction. Non-radioactive Golgi apparatus were immobilized on nitrocellulose as the acceptor. When reconstituted, the radiolabeled donor retained a capacity to transfer labeled lipids to the non-radioactive Golgi apparatus acceptor. Transfer exhibited two kinetically different components. One was stimulated by ATP, facilitated by cytosol and inhibited by guanosine 5'-O-(thiotriphosphate) and N-ethylmaleimide. In parallel with protein transport, the ATP-dependent lipid transfer occurred with a temperature transition at about 20 degrees C. The other was not stimulated by ATP, did not require cytosol, was acceptor unspecific, was unaffected by inhibitors and, while temperature dependent, did not exhibit a sharp temperature transition. The ATP-independent transfer was non-vesicular. In contrast, the ATP-dependent transfer was vesicular. Transition vesicles isolated by preparative free-flow electrophoresis, when used as the donor fraction, transferred lipids to Golgi apparatus acceptor with a 5-6-fold greater efficiency than that exhibited by the unfractionated transitional endoplasmic reticulum. Formation of transition vesicles was ATP-dependent. Transferred lipids were chiefly phosphatidylcholine and cholesterol. Membrane triglycerides, major constituents of the transitional endoplasmic reticulum membranes, were both depleted in the transition vesicle-enriched fractions and not transferred to Golgi apparatus suggestive of lipid sorting prior to or during transition vesicle formation. The characteristics of the ATP plus cytosol-dependent transfer were similar to those for protein transfer mediated by transition vesicles. Thus, the 50-70-nm vesicles derived from transitional endoplasmic reticulum appear to function in the trafficking of both newly synthesized proteins and lipids from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

4.
Transfer of phosphatidylinositol (PI) between membranes was reconstituted in a cell-free system using membrane fractions isolated from dark-grown soybean (Glycine max [L.] Merr.). Donor membrane vesicles contained [3H]myo-inositol-labeled PI. A fraction enriched in endoplasmic reticulum was a more efficient donor than its parent microsomal membrane fraction. As acceptor, cytoplasmic side-out plasma membrane vesicles were more efficient than cytoplasmic side-in plasma membrane vesicles. Endoplasmic reticulum was also an efficient acceptor, suggesting that transfer occurred to cytoplasmic membrane leaflets. PI transfer was time and temperature dependent but did not require cytosolic proteins, ATP, GTP, cytosol, and acyl-coenzyme A. These results suggest that neither lipid transfer proteins nor transition vesicles, similar to those involved in vesicle trafficking from endoplasmic reticulum to the Golgi apparatus, were involved. In the presence of Mg2+ and ATP, endoplasmic reticulum PI was not metabolized, whereas PI transferred to the plasma membrane was metabolized into phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate. To summarize, the cell-free transfer of endoplasmic reticulum-derived PI was distinct from, for example, vesicle transport from endoplasmic reticulum to Golgi apparatus, not only in its regulation but also in its acceptor unspecificity.  相似文献   

5.
In many systems transfer between the endoplasmic reticulum and the Golgi apparatus is blocked at temperatures below 16 degrees C. In virus-infected cells in culture, a special membrane compartment is seen to accumulate. Our studies with rat liver show a similar response to temperature both in situ with slices and in vitro with isolated transitional endoplasmic reticulum fractions. With isolated transitional endoplasmic reticulum fractions, when incubated in the presence of nucleoside triphosphate and a cytosol fraction, temperature dependent formation of vesicles occurred with a Q10 of approximately 2 but was apparent only at temperatures greater than 12 degrees C. A similar response was seen in situ at 12 degrees C and 16 degrees C where fusion of transition vesicles with cis Golgi apparatus, but not their formation, was blocked and transition vesicles accumulated in large numbers. At 18 degrees C and below and especially at 8 degrees C and 12 degrees C, the cells responded by accumulating smooth tubular transitional membranes near the cis Golgi apparatus face. With cells and tissue slices at 20 degrees C neither transition vesicles nor the smooth tubular elements accumulated. Those transition vesicles which formed at 37 degrees C were of a greater diameter than those formed at 4 degrees C both in situ and in vitro. The findings show parallel responses between the temperature dependency of transition vesicle formation in vitro and in situ and suggest that a subpopulation of the transitional endoplasmic reticulum may be morphologically and functionally homologous to the 16 degrees C compartment observed in virally-infected cell lines grown at low temperatures.  相似文献   

6.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

7.
Summary Membranes and membrane proteins from undifferentiated cells and torpedo-stage embryos were compared. A comparison of marker enzyme profiles on linear sucrose gradients showed that the membrane vesicles obtained from 14-day-old embryos were consistently less dense than those obtained from undifferentiated carrot cells. The density of the endoplasmic reticulum, for instance, was 1.10g/cm3 in embryos and 1.12g/cm2 in undifferentiated cells. Proteins and glycoproteins from endoplasmic reticulum-, Golgi apparatus-, and plasma membrane-enriched fractions were compared from undifferentiated carrot cells with 14-day-old embryos by 2D SDS-PAGE. When these two tissues were compared, extensive qualitative and quantitative changes in the steady-state endomembrane and plasma membrane proteins were observed. The plasma membrane was examined further by labeling the plasma membrane proteins with sulfosuccinimidylbiotin. Using this specific label, plasma membrane proteins of 54 kD, 41 kD, 16 kD, and 15 kD were found to be uniquely associated with the embryonic state. Conversely, a 70 kD protein and a 45 kD glycoprotein were found to be associated with only undifferentiated cells. These results demonstrate that proteins of the plasma membrane exhibit distinct changes as a result of somatic embryogenesis in carrot.Abbreviations conA concanavilin A - 2,4-D 2,4-dichlorophenoxyacetic acid - p protein - gp glycoprotein - kD kilodalton - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

8.
Cell-free transfer of radiolabeled membrane proteins from part-rough, part-smooth transitional elements of the endoplasmic reticulum to Golgi apparatus immobilized to nitrocellulose in the presence of nucleoside triphosphate, an ATP-regenerating system and a cytosol fraction was promoted by retinol. At an optimum concentration of 1 microgram/ml, the rate and amount of transfer was approximately doubled over 1 to 2 h of incubation in the cell-free system. The transition vesicles induced to form in the cell-free system were concentrated by preparative free-flow electrophoresis in order to study separately the steps of vesicle formation from transitional endoplasmic reticulum and the steps of vesicle fusion with Golgi apparatus. The retinol effect was on vesicle formation as evidenced by an approx. 2-fold increase in transition vesicle numbers, as determined by electron microscope morphometry, and amount from protein determinations on the isolated fractions enriched in transition vesicles. The retinol response in the complete transfer could be eliminated by addition of concentrated cytosol, including cytosol depleted of retinol. An interaction of retinol with some component of the vesicle formation process, possibly involving guanine nucleotides, is indicated.  相似文献   

9.
《The Journal of cell biology》1994,127(6):1871-1883
The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (TER). Vesicle budding from the TER is an ATP-dependent process both in vivo and in vitro. An ATPase with a monomer molecular weight of 100 kD by SDS-PAGE has been isolated from TER and designated as TER ATPase. The native TER ATPase has been characterized as a hexamer of six 100-kD subunits by gel filtration. The protein catalyzes the hydrolysis of [gamma 32-P]ATP and is phosphorylated in the presence of Mg2+. It is distinct from the classical transport ATPases based on pH optima, ion effects, and inhibitor specificity. Electron microscopy of negatively stained preparations revealed the TER ATPase to be a ring- shaped structure with six-fold rotational symmetry. A 19-amino acid sequence of TER ATPase having 84% identity with valosin-containing protein and 64% identity with a yeast cell-cycle control protein CDC48p was obtained. Anti-synthetic peptide antisera to a 15-amino acid portion of the sequence of TER ATPase recognized a 100-kD protein from TER. These antisera reduced the ATP-dependent cell-free formation of transition vesicles from isolated TER of rat liver. In a reconstituted membrane transfer system, TER ATPase antisera inhibited transfer of radiolabeled material from endoplasmic reticulum to Golgi apparatus, while preimmune sera did not. The results suggest that the TER ATPase is obligatorily involved in the ATP requirements for budding of transition vesicles from the TER. cDNA clones encoding TER ATPase were isolated by immunoscreening a rat liver cDNA library with the affinity- purified TER ATPase antibody. A computer search of deduced amino acid sequences revealed the cloned TER ATPase to be the rat equivalent of porcine valosin-containing protein, a member of a novel family of ATP binding, homo-oligomeric proteins including the N-ethylmaleimide- sensitive fusion protein.  相似文献   

10.
Summary The process of formation from endoplasmic reticulum and transfer to Golgi apparatus of small 50–70 nm transition vesicles has been reconstituted in a cell-free system. Fractions enriched in transition elements derived from part-rough, part-smooth transitional regions of the endoplasmic reticulum were prepared from elongation zones of hypocotyls of etiolated seedlings of soybean and coleoptiles of maize and were compared with those from rat liver. When activated with nucleoside triphosphate, cytosol and an ATP regenerating system, time- and temperature-dependent transfer of membranes to Golgi apparatus acceptor was demonstrated. The fractions enriched in transition elements were radioiodinated with125I by the Bolton-Hunter procedure. Acceptor Golgi apparatus stacks were immobilized to nitrocellulose strips to facilitate analysis. In heterologous transfer experiments, the plant and animal acceptors and donors could be interchanged. The transfer was limited primarily by the donor (rat liver > soybean hypocotyl > maize coleoptiles) and determined secondarily by the source of the acceptor. The acceptor fractions were most efficacious when prepared from the same source as the donor. Thus, 50–70 nm vesicles bud from transitional endoplasmic reticulum elements of plants function in a manner similar to those of animal cells to transfer membrane materials to the Golgi apparatus. The recognition signals that determine vesicle fusion appear to be conserved both among species and between the plant and animal kingdoms to the extent that donor and acceptor sources may be interchanged with only small reductions in overall efficiency of transfer.Abbrevations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - EDTA ethylenediaminetetraacetic acid  相似文献   

11.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

12.
Purified fractions of plasma membrane, Golgi apparatus, rough endoplasmic reticulum vesicles, nuclear envelope, and mitochondria were isolated from mouse liver and the distribution of H-2 histocompatibility antigens determined by indirect radioimmunoassay before and after membrane disruptive treatments. Fractions enriched in plasma membrane (surface membrane) revealed H-2 antigens in highest concentration; disruptive treatments were not necessary to reveal H-2 antigens with surface membranes. In contrast, internal membranes did not possess H-2 antigens which were accessible to antibody. Golgi apparatus fractions or some component of these fractions (e.g. secretory vesicles) possessed the antigens but in a latent form where accessibility was provided by simple rupture of the membrane vesicles. With endoplasmic reticulum, detergent solubilization of the membranes was required before H-2 antigen could be detected. Nuclear envelope preparations contained little or no demonstrable H-2 activity. These results were confirmed by several techniques including immunoprecipitation of labelled solubilized membrane components with anti-H-2 serum and subsequent analysis in SDS-PAGE.  相似文献   

13.
Cell-free transfer of membrane lipids. Evidence for lipid processing   总被引:1,自引:0,他引:1  
A latent phospholipase A is concentrated in cis elements of rat liver Golgi apparatus, the presumed sites of fusion of the 50-70-nm transition vesicles formed from endoplasmic reticulum. As a result, conversion of transferred phospholipids to their corresponding lysoforms may provide an index of post transfer lipid processing in a corresponding reconstituted membrane transfer system. To label the phosphatidylcholine of transitional endoplasmic reticulum in vitro, [14C]CDP-choline and endogenous cytidyltransferases were used. In the reconstituted transfer system, the radiolabeled phosphatidylcholine was transferred via transition vesicles to Golgi apparatus immobilized on nitrocellulose strips in a time- and temperature-dependent process. Transfer was promoted by ATP and the ATP-dependent transfer was specific for cis Golgi apparatus elements as acceptor. Trans Golgi apparatus elements were ineffective as acceptors. Median Golgi apparatus elements were intermediate. A portion of the transferred phosphatidylcholine was converted subsequently to lysophosphatidylcholine also in a time- and ATP-dependent manner. The phospholipase A activity of the Golgi apparatus was more than 90% latent (active site located on the lumens of the Golgi apparatus membranes). Therefore, the lipid-containing vesicles derived from endoplasmic reticulum must have combined with cis Golgi apparatus membranes as the basis for Golgi apparatus-dependent phospholipase A processing of endoplasmic reticulum-derived phosphatidylcholine. Since the lipids were processed by phospholipase A in approximately the same proportion as occurs in situ, the findings offer evidence both for the specificity of the ATP-dependent component of cell-free lipid transfer from endoplasmic reticulum to Golgi apparatus and its fidelity to lipid transfer observed in vivo.  相似文献   

14.
Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca(2+), A23187 stimulated-ATPase). Both calcium uptake and Ca(2+), A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [gamma-(32)P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.  相似文献   

15.
Summary A fast and easy procedure is proposed for preparing concomitantly from the same sample of intestinal mucosa of A+ rabbits, four fractions high enriched in the brush-border and basolateral plasma membrane domains, rough endoplasmic reticulum, and smooth endoplasmic reticulum plus Golgi apparatus membranes, respectively. This is the first time the technique of flow fluorometry has been applied to characterize the brush-border and basolateral membrane fractions using polyclonal or monoclonal antibodies against antigens common to or specific for these two plasma membrane domains. This technique definitely proves the presence of aminopeptidase in at least 60% of the basolateral membrane vesicles, where its level is about 4.5% of that in the brush-border membrane vesicles. The endoglycosidase H-sensitive intermediate of glycosylation of aminopeptidase N in the steady state is accumulated in both the rough and smooth endoplasmic reticulum membranes. Although the rough membrane is more extensive it contains only about 40% of this transient form.  相似文献   

16.
Coated vesicles were isolated from rat liver in about 80% fraction purity as determined from electron microscopy and analyses of marker enzymes and compared with Golgi apparatus and other membrane fractions isolated in parallel. The fractions were enriched in NADH-monodehydroascorbate reductase, ascorbate oxidase and ascorbic acid. The NADH-monodehydroascorbate reductase and ascorbate oxidase of the Golgi apparatus and coated vesicles differed from that of the endoplasmic reticulum in being inhibited by the sodium selective ionophore, monensin, at physiological concentrations while these activities were stimulated by ethylenediaminetetraacetic acid in coated vesicles but not in Golgi apparatus. Activities of both coated vesicles and Golgi apparatus fractions depleted in the coat protein, clathrin, were activated by the addition of clathrin-rich supernatant fractions. The results are discussed in the context of monodehydroascorbate as an acceptor for electron transport-mediated transfer of electrons from NADH by coated vesicles as part of a possible mechanism to drive membrane translocations or to acidify the interiors of vesicles.  相似文献   

17.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

18.
The mystery of the unstained Golgi complex cisternae   总被引:2,自引:0,他引:2  
The Champy-Maillet OsKI reaction has been used upon Golgi complexes to show two kinds of staining. It stains material being processed as it passes along the secretory pathway of the rough endoplasmic reticulum (RER) and Golgi cisternae (GC) up to crystallization in secretory vesicles. It also stains separately the environment within parts of the GC. This GC staining may occur in all compartments (transition vesicles, saccules, condensing vacuoles), but it is characteristically missing from any one of them. The unstained cisternae may be explained if outer saccules are made from either stained or unstained transition vesicles, both of which occur. The presence of empty, unstained transition vesicles is dictated by the surface to volume ratios of microvesicles in relation to saccules. Most transition vesicles must return their membrane to the endoplasmic reticulum, but from time to time it is presumed that they fuse to make a saccule. Saccules, stained and unstained, then mature through the stack. OsKI reactions with tissues and test molecules suggest that in the RER and GC the stain detects labile--S . S--bridges before they lock the tertiary configuration of proteins.  相似文献   

19.
Electronmicroscopic study of Coleps, Colpidium, Stylonychia, and especially of Paramecium confirmed the presence of the Golgi complex in these fresh-water ciliates. The complex consisted of numerous dictyosomes scattered throughout the cytoplasm. Each dictyosome included a few flat, partly reticulated saccules lying parallel to a cistern of rough endoplasmic reticulum which was free of ribosomes on the side exposed to the dictyosome. A unique layer of vesicles, characterized by constant size and a thick wall, separated the endoplasmic reticulum from the dictyosomes. The vesicles could be regarded as transition vesicles. Coated vesicles were seen in continuity with some of the flattened saccules. The possible role of the Golgi complex in the physiology of ciliates is discussed.  相似文献   

20.
 Cell-free systems for the analysis of Golgi apparatus membrane traffic rely either on highly purified cell fractions or analysis by specific trafficking markers or both. Our work has employed a cell-free transfer system from rat liver based on purified fractions. Transfer of any constituent present in the donor fraction that can be labeled (protein, phospholipid, neutral lipid, sterol, or glycoconjugate) may be investigated in a manner not requiring a processing assay. Transition vesicles were purified and Golgi apparatus cisternae were subfractionated by means of preparative free-flow electrophoresis. Using these transition vesicles and Golgi apparatus subfractions, transfer between transitional endoplasmic reticulum and cis Golgi apparatus was investigated and the process subdivided into vesicle formation and vesicle fusion steps. In liver, vesicle formation exhibited both ATP-independent and ATP-dependent components whereas vesicle fusion was ATP-independent. The ATP-dependent component of transfer was donor and acceptor specific and appeared to be largely unidirectional, i.e., ATP-dependent retrograde (cis Golgi apparatus to transitional endoplasmic reticulum) traffic was not observed. ATP-dependent transfer in the liver system and coatomer-driven ATP-independent transfer in more refined yeast and cultured cell systems are compared and discussed in regard to the liver system. A model mechanism developed for ATP-dependent budding is proposed where a retinol-stimulated and brefeldin A-inhibited NADH protein disulfide oxidoreductase (NADH oxidase) with protein disulfide-thiol interchange activity and an ATP-requiring protein capable of driving physical membrane displacement are involved. It has been suggested that this mechanism drives both the cell enlargement and the vesicle budding that may be associated with the dynamic flow of membranes along the endoplasmic reticulum-vesicle-Golgi apparatus-plasma membrane pathway. Accepted: 26 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号