首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The responses of plasma aldosterone (A) and plasma renin activity (PRA) to orthostatism have been evaluated in 47 women during the follicular and/or luteal phase of the menstrual cycle. Three postmenopausal women and 51 men were also studied for control. Fourteen cycling women and 11 men were studied on a low sodium diet (20 mEq/day) while the rest of the subjects were on normal sodium intake. In addition, 18 women (including those postmenopausal) and 17 men were studied after intravenous administration of 20 mg frusemide. The response of A to orthostatism in women during luteal phase on normal sodium diet with or without frusemide was much greater than in men or women during follicular phase (p less than 0.01) or menopuase (p less than 0.05). However, no differences between groups could be observed in A response while on a low sodium diet. PRA response was similar during follicular of luteal phase fo the cycle as well as in men either on low or normal sodium intake with or without frusemide.  相似文献   

2.
Before and on the 30th day of danazol administration (200 mg/day), in six postmenopausal women the activity of endogenous opioid peptides has been indirectly evaluated by the effect on LH secretion and body temperature (measured as rectal temperature) exerted by the infusion of the opioid antagonist naloxone (1.6 mg/h x 4 h preceded by 1.6 mg iv bolus). Before and during danazol administration a GnRH test (100 mcg iv bolus) was also performed to evaluate possible variations in pituitary responsiveness to GnRH. Danazol significantly reduced mean plasma levels of LH and FSH (p less than 0.01), and their response to GnRH stimulus (p less than 0.05). Either before or during danazol administration mean plasma LH and FSH levels did not vary during the infusion of naloxone, while body temperature significantly decreased (p less than 0.01). The decrease in body temperature was significantly greater (p less than 0.05) during danazol than before treatment. The present data suggest that in postmenopausal women a low dose of danazol exerts an antigonadotropic effect mainly reducing the pituitary responsiveness to GnRH. The enhanced hypothermic response to naloxone observed during danazol administration also seems to suggest that in postmenopausal women a low dose of danazol enhances the thermoregulatory role of endogenous opioid peptides.  相似文献   

3.
The endogenous opioid peptides (EOPs) may inhibit the rate of hypothalamic gonadotropin-releasing hormone (GnRH) release and hence the frequency of pulsatile luteinizing hormone (LH) release, particularly in the luteal phase of the menstrual cycle. Our objectives were to compare the effects of an opiate antagonist, naloxone (NAL), on the patterns of LH, estradiol-17 beta (E2), and progesterone (P4) secretion during the follicular and luteal phases of the macaque menstrual cycle. Plasma levels of E2, P4, and bioactive LH were measured in serial, 15-min blood samples during 8-hr infusions of NAL (2 mg/hr) or saline, either on Days 5 or 6 of the follicular phase (FN and FS, n = 5 and 4, respectively) or on Days 8, 9, or 10 of the luteal phase (LN and LS, n = 5 each) of a menstrual cycle. The pulsatile parameters of each hormone were determined by PULSAR analysis and the correspondence of steroid pulses with those of LH were analyzed for each cycle stage in each animal. As expected, LH mean levels and pulse frequencies in LS monkeys were only about one-third of those values in FS animals. NAL had no effects on pulsatile LH, E2, or P4 release during the follicular phase. In contrast, luteal phase NAL infusions increased both LH mean levels and pulse frequencies to values which were indistinguishable from those in FS animals. LH pulse amplitudes did not differ among the four groups. Mean levels and pulse frequencies of P4 secretion in LS monkeys were about 4- and 14-fold greater than those values in FS animals. Mean levels and pulse amplitudes of P4 release in LN animals were greater than those values in all other groups. LH and E2 pulses were not closely correlated in follicular phase animals, and this pulse association was not altered by NAL. In FS monkeys, LH and P4 pulses were not correlated; however, NAL increased this LH-p4 pulse correspondence. LH and P4 pulses were closely correlated in luteal phase animals and this association was not affected by NAL. Our data suggest that the EOPs inhibit the frequency of pulsatile LH secretion in the presence of luteal phase levels of P4. During the midfollicular phase when LH pulses occur every 60 to 90 min, the opioid antagonist NAL alters neither the pulsatile pattern of LH release nor E2 secretion, but NAL may directly affect P4-secreting cells.  相似文献   

4.
In order to elucidate the relationship between prolactin (PRL) levels and corpus luteum function in humans, assessment of temporal relationship between levels of PRL, LH, FSH, estradiol and progesterone was made in eleven normal cycling women and six short luteal women. All hormones were determined by specific radioimmunoassay. The mean PRL level in the luteal phase was higher than that in the follicular phase in normal women. On the other hand, no difference mean was seen between the PRL levels of follicular and luteal phases in short luteal women. In addition, follicular and luteal phase secretion of PRL in the short luteal phase (SLP) was lower than that in the normal control. LH and FSH in the follicular and luteal phases, estradiol secretion in the late follicular and early to mid-luteal phases in SLP were also lower than those in the control. These observations were consistent with the hypothesis that SLP is a sequel to aberrant folliculogenesis. In addition, it is inferred that low PRL levels in the SLP might be due to inadequate augmentation by estrogen, rather than giving PRL any positive controlling role in the maintenance of corpus luteum function.  相似文献   

5.
In three experiments, we examined endogenous opioid inhibition of luteinizing hormone (LH) secretion during the bovine estrous cycle. An increase in serum LH in response to the opioid antagonist naloxone (Na; 1 mg/kg i.v.) was the criterion for opioid inhibition. Estrous cycles were synchronized via prostaglandin administration. In Experiment 1, mean serum LH was not different during the luteal phase in yearling heifers (n = 6/group) at Hour 1 after Nal (2.1 ng/ml) compared to controls (1.8 ng/ml). However, LH peak amplitude was increased (p less than 0.05) in the Nal compared to the control group. Serum LH was increased (p less than 0.01) during the follicular phase in heifers at Hour 1 post-Nal compared to controls (4.7 and 3.5 ng/ml, respectively). Again, Nal administration was followed by increased (p less than 0.05) LH pulse amplitude compared to control. In Experiment 2, no effect of Nal upon serum LH was detected in cows (n = 9) during proestrus, metestrus, midluteal and late luteal portions of the estrous cycle. In Experiment 3, the LH response to Nal was examined simultaneously in yearling heifers and cows (n = 5/group) during the luteal and follicular phases. Serum LH increased (p less than 0.001) during Hour 1 post-Nal in heifers compared to cows during the follicular (3.4 vs. 1.7 ng/ml) but not during the luteal phase. LH pulse amplitude also increased (p less than 0.05) during Hour 1 post-Nal in heifers compared to cows during the luteal (2.5 vs. 1.1 ng/nl and follicular (2.5 vs. 1.3 ng/ml) phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Opioid modulation of LH secretion in the ewe   总被引:2,自引:0,他引:2  
Administration of opioid agonists and antagonists and measurement of resulting hormone changes were used to study the possible effects of opioids on reproductive function in the ewe. Intravenous administration of the long-acting methionine-enkephalin analogue FK33-824 (250 micrograms/h for 12 h) to 3 ewes during the follicular phase of the oestrous cycle depressed episodic LH secretion. This effect was reversed by administration of the opiate antagonist naloxone (25 mg/h) in combination with the FK33-824 treatment; in fact LH secretion was enhanced by the combined regimen. Naloxone (25 mg/h for 12 h) administered alone to 3 ewes in the follicular phase also enhanced LH secretion. In 3 animals treated with FK33-824 during the follicular phase, progesterone remained basal for 14 days after treatment, suggesting that ovulation was blocked. Jugular venous infusion of naloxone (25, 50 or 100 mg/h for 8h) into 5 ewes during the early and mid-luteal phase of the cycle resulted overall in a significant increase in mean plasma LH concentrations and LH episode frequency. To investigate whether endogenous opioids suppress LH release in seasonally anoestrous sheep, naloxone was infused intravenously into mature (25, 50 or 100 mg/h for 8 h) and yearling ewes (12 . 5, 25 or 50 mg/h for 8 h) during early, mid- and late anoestrus and plasma LH concentrations were measured. In the mature ewes, there was a trend for naloxone to increase LH values during the early anoestrous period but naloxone was without effect during mid- and late anoestrus. In the yearlings, naloxone infusion consistently increased plasma LH concentrations as a result of a significant increase in LH episode frequency. These experiments indicate that endogenous opioid peptides probably modulate gonadotrophin secretion during both the follicular and luteal phases of the oestrous cycle. However, the follicular phase of the sheep cycle is of short duration, and there may be residual effects of luteal-phase progesterone during this period. Secondly, there may be an age-dependent effect of naloxone on LH secretion during seasonal anoestrus in the ewe, with opioids playing a part in the suppression of LH in young but not in mature animals.  相似文献   

7.
Little is known about the regulation of temporal variations of progesterone over the 24-hr span in young cycling women as well as in postmenopausal women. The purpose of the present study was to investigate the relationships between diurnal variations of progesterone and diurnal variations of hormones of the gonadotropic and corticotropic axes, and to provide further information on the source of progesterone secretion under physiological conditions. Twenty-four-hour hormonal profiles were explored under well-controlled laboratory conditions in 10 healthy women (21–36 yr old) with normal ovulatory cycles during early-mid follicular and late luteal phases, and in 8 healthy postmenopausal women (48–74 yr old). In young cycling women, significant positive relationships were found between progesterone and follicle-stimulating hormone (FSH) – but not luteinizing hormone (LH) – profiles during late luteal phase. Conversely, during follicular phase, significant positive relationships were evidenced between progesterone and cortisol profiles, but not between progesterone and FSH or LH. In postmenopausal women, strong positive correlations were found between progesterone and corticotropin (ACTH) or cortisol profiles. The present results indicate that during late luteal phase, temporal progesterone profiles are associated with FSH rather than with LH profiles. They also provide evidence that adrenal cortex is a major – or possibly the only – source of progesterone production during the follicular phase of the normal ovulatory cycle, and probably the only source after menopause.  相似文献   

8.
The purpose of this study was to evaluate the effects of dermorphin, a new synthetic powerful opiate-like heptapeptide, on plasma luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels in fertile and postmenopausal women. In fertile subjects, dermorphin (5.5 micrograms/kg min for 30 min) decreases plasma LH (p less than 0.01 vs. baseline and placebo values), but not plasma FSH. The area under the curve during dermorphin infusion was significantly lower than during placebo infusion (p less than 0.01). Pretreatment with the opioid receptor antagonist naloxone, blocked the decrease of plasma LH levels. In postmenopausal women not subjected to any treatment, dermorphin infusion did not significantly modify plasma LH and FSH levels. On the contrary, its administration to postmenopausal subjects treated with conjugated estrogens and medroxyprogesterone acetate significantly decreased plasma LH levels (p less than 0.01, vs. baseline, placebo and area under the curve). Considering the modulatory role exerted by ovarian steroids on the activity of such receptors, these data also indicate that opioid systems play a very important part in the hypothalamus-pituitary-ovarian axis.  相似文献   

9.
Since smoking has been shown to affect serum progesterone and estradiol levels in postmenopausal women, we evaluated the levels of these hormones and luteinizing hormone (LH) over an entire menstrual cycle (17 points) in eight healthy nonsmokers and eight healthy smokers. The total length of the cycle and the lengths of the follicular and luteal phases did not differ between the groups. There was no difference in estradiol, progesterone, or LH levels during the periovulatory and luteal phases. Follicular-phase serum progesterone, which had a level 37% higher in smokers, showed a plateau in both groups (28.3 +/- 5.7 ng/dl versus 20.7 +/- 5.7; P less than 0.0001). Follicular-phase serum estradiol showed a rising curve in both groups. The mean value in smokers was slightly higher than that in nonsmokers (107 pg/ml versus 95; P approximately 0.05); during the early part of the follicular phase, prior to the rapid preovulatory increase, the difference was greater (23%) and of higher statistical significance (80 pg/ml versus 65; P less than 0.001). The follicular-phase LH levels of smokers were skewed downward from the levels in nonsmokers, presumably by negative feedback from the elevated estradiol and progesterone levels; the difference was significant (P less than 0.001). The elevations of serum progesterone and estradiol in smokers probably represent activation of adrenocortical secretion by smoking. The greater and more clear-cut rise of progesterone than of estradiol is probably due to the fact that essentially all of the follicular-phase serum progesterone is secreted by the adrenal, while only part of the follicular-phase serum estradiol comes from the adrenal (via androstenedione and estrone).  相似文献   

10.
Possible endogenous opioid peptide regulation of the preovulatory gonadotrophin surge was examined in ewes during the breeding season. Intact ewes (n = 54) were synchronized by treatment for 12 days with intravaginal sponges releasing medroxyprogesterone acetate. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion prior to and during the gonadotrophin surge were not affected by naloxone (0.33 mg/kg body wt per h) administered from the time of medroxyprogesterone acetate withdrawal until 30 h after the onset of oestrus (n = 6). Morphine was administered in 4 patterns: (i) 0.25 mg morphine/kg body wt per h from medroxy-progesterone acetate withdrawal until 30 h after the onset of oestrus (n = 6), (ii) 0.25 mg morphine/kg body wt per h from 24 to 48 h after medroxyprogesterone acetate withdrawal (n = 6), (iii) 0.50 mg morphine/kg body wt per h from 24 to 36 h after medroxyprogesterone acetate withdrawal (n = 6) and (iv) 0.50 mg morphine/kg body wt per h from 18 to 30 h after medroxyprogesterone acetate withdrawal (n = 6). Oestrus and the gonadotrophin surge were delayed, but not blocked, in all cases of morphine administration (P less than 0.05). Inconsistent effects of morphine on circulating oestradiol and gonadotrophin concentrations prior to the gonadotrophin surge suggest that the delays are not due to reduced gonadotrophic support of ovarian oestradiol output. Morphine may reduce responsiveness of central behavioural and gonadotrophin surge-generating centres to the oestradiol signal. The absence of effects of naloxone on gonadotrophin secretion suggest that suppression of LH secretion by opioid peptide activity is reduced after the end of the luteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Ovarian hormones are known to affect endocrine pancreas function. However, data concerning the effects of anovulatory menstrual cycles in regularly menstruating women on endocrine pancreas and blood metabolites are lacking. We examined plasma insulin, glucagon, glucose, lactate, urea and glycerol concentrations in reproductive-age, regularly menstruating females classified as ovulating or non-ovulating on the basis of basal body temperature measurements and plasma 17beta-estradiol and progesterone determinations. All measurements were performed twice--in the follicular and again in the luteal phases of the menstrual cycle. There were no differences in plasma lactate and glycerol concentrations between the two groups of subjects. Plasma insulin concentrations tended to be lower in non-ovulating than in ovulating women. In addition, plasma glucagon did not differ in the follicular (33.2 pmol/l) or luteal phase of the menstrual cycle in females with disturbed ovarian hormone secretion (34.1 pmol/l). In contrast, plasma glucagon concentrations in the luteal phase (32.8 pmol/l) were significantly higher than in the follicular phase (24.9 pmol/l) of the menstrual cycle in ovulating women. Plasma glucose concentrations in the follicular phase of the menstrual cycle in non-ovulating women (4.1 mmol/l) were slightly but significantly lower than in their ovulating counterparts (5.3 mmol/l). Furthermore, no correlations were noted between plasma glucose and insulin-to-glucagon molar ratio in non-ovulating subjects. Plasma urea concentrations in non-ovulating women were markedly lower than in ovulating women in both follicular and luteal phases of the menstrual cycle (4.1 and 3.9 mmol/l vs. 5.3 and 5.4 mmol/l in non-ovulating and ovulating women, respectively). In ovulating women, plasma urea levels in both cycle phases were significantly correlated with plasma glucagon concentrations, but no such correlation was found in non-ovulating women. In conclusion, anovulatory menstrual cycles in premenopausal females slightly altered pancreatic hormone plasma levels but markedly impaired their action on plasma glucose and urea concentrations.  相似文献   

12.
Current evidence suggests that endogenous opioid peptides (EOPs) tonically inhibit secretion of luteinizing hormone (LH) by modulating the release of gonadotropin-releasing hormone (GnRH). Because of their apparent inhibitory actions, EOPs have been assumed to alter both pulse frequency and amplitude of LH in the rat; and it has been hypothesized that EOP pathways mediate the negative feedback actions of steroids on secretion of GnRH. In order to better delineate the role of EOPs in regulating secretion of LH in the male rat, we assessed the effects of a sustained blockade of opiate receptors by naloxone on pulsatile LH release in four groups: intact male rats, acutely castrated male rats implanted for 20 h with a 30-mm capsule made from Silastic and filled with testosterone, acutely castrated male rats implanted for 20 h with an osmotic minipump dispensing 10 mg morphine/24 h, and male rats castrated approximately 20 h before treatment with naloxone. We hypothesized that if EOPs tonically inhibited pulsatile LH secretion, a sustained blockade of opiate receptors should result in a sustained increase in LH release. We found that treatment with naloxone resulted in an immediate but transient increase in LH levels in intact males compared to controls treated with saline. Even though mean levels of LH increased from 0.15 +/- 0.04 to a high of 0.57 +/- 0.14 ng/ml, no significant difference was observed between the groups in either frequency or amplitude of LH pulses across the 4-h treatment period. The transient increase in LH did result in a 3- to 4-fold elevation in levels of plasma testosterone over baseline. This increase in testosterone appeared to correspond with the waning of the LH response to naloxone. The LH response to naloxone was eliminated in acutely castrated rats implanted with testosterone. Likewise, acutely castrated rats treated with morphine also failed to respond to naloxone with an increase in LH. These observations suggest that chronic morphine and chronic testosterone may act through the same mechanism to modulate secretion of LH, or once shut down, the GnRH pulse-generating system becomes refractory to stimulation by naloxone. In acutely castrated male rats, levels of LH were significantly increased above baseline throughout the period of naloxone treatment; this finding supports the hypothesis that the acute elevation in testosterone acting through mechanism independent of opioid is responsible for the transient response of LH to naloxone in the intact rat.  相似文献   

13.
Naloxone is unable to stimulate FSH and LH secretion in elderly men, suggesting a reduced endogenous opioid control of gonadotropin secretion in senescence. In the present study, we examined whether in elderly men a chronic dopaminergic stimulation with bromocriptine (5 mg/day for 7 days) modifies the gonadotropin response to naloxone (4 mg as an i.v. bolus plus 10 mg infused in 2 h). Eleven younger men (group 1, 22-40 years old) participated as controls. Twenty-two elderly men were selected from a larger population and were divided into two groups: subjects with compensated gonadal failure (normal blood testosterone and elevated gonadotropin concentrations; group 2, n = 11; 62-80 years old) and men with normal gonadal function (normal blood testosterone and gonadotropin levels; group 3, n = 11; 61-82 years old). Naloxone induced a striking LH and a slight but significant FSH increase in group 1, but was unable to change serum gonadotropin concentrations in elderly subjects of both groups 2 and 3. When experiments were repeated after bromocriptine treatment, no significant differences in LH and FSH responses to naloxone were observed in the younger subjects. On the other hand, bromocriptine restored significant gonadotropin responses to naloxone in elderly men. In fact, after bromocriptine, naloxone-induced FSH and LH increments in groups 2 and 3 were indistinguishable from those observed in group 1. These data suggest that in men age-related dopaminergic alterations may underlie the defective endogenous opioid control of gonadotropin secretion.  相似文献   

14.
The present study was undertaken in order to assess the influence of aging on the endogenous opioid control of gonadotropin and adrenocorticotropin/cortisol secretion in man. For this purpose, the capability of the opioid antagonist naloxone to increase circulating levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and cortisol was tested in male subjects of different ages. Thirty normal men were randomly chosen and divided into 3 groups by age: group I = 22-40 years (n = 10); group II = 41-59 years (n = 10); group III = 62-80 years (n = 10). Since the men of group III showed higher basal serum gonadotropin concentrations than the subjects of group I and group II, we selected from a large population a fourth group of elderly men with normal basal LH and FSH levels: group IV = 61-82 years (n = 7). All subjects were tested for 120 min during the intravenous administration of naloxone (4 mg given in an intravenous bolus at time 0, plus 10 mg infused for 2 h). Control tests with normal saline instead of naloxone were performed in all groups. All subjects had similar blood testosterone and cortisol levels, whereas LH and FSH concentrations were significantly higher in group III than in groups I, II and IV. Naloxone increased plasma cortisol concentrations by 50% in all groups. The cortisol secretory response followed a similar pattern regardless of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
W D Currie  N C Rawlings 《Life sciences》1987,41(10):1207-1214
Suffolk x whiteface ewes were infused with 0.5 mg/kg/hr naloxone hydrochloride (NAL) for 6 hrs during the early, mid and late luteal and early follicular phases of the estrous cycle. Basal serum luteinizing hormone (LH) concentration was increased by NAL during each trial in the luteal phase and LH pulse amplitude was proportionately increased by 158%, 164% and 350% during the early luteal, mid luteal and early follicular phases, respectively. The apparent NAL induced increase (92%) in LH pulse amplitude during the late luteal phase was not significant. NAL only affected LH pulse frequency during the early follicular phase, when it was decreased. Mean serum follicle stimulating hormone (FSH) concentration was not affected by NAL. The results of this study indicate that endogenous opioid peptides (EOPs) may partially mediate the suppressive influence of estradiol-17 beta (E2) on LH pulse amplitude and also the stimulatory effect of E2 on LH pulse frequency in the early follicular phase. The data may suggest that NAL enhances the amplitude of pulses of gonadotropin releasing hormone (GnRH) by counteracting E2 inhibitory effects on LH release at the level of the pituitary. Alternately, some component of E2 feedback may be an EOP mediated component at the level of the hypothalamus.  相似文献   

16.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

17.
In order to determine if endogenous opioids regulate luteinising hormone (LH) and prolactin secretion via a common, gonadotropin-releasing hormone (GnRH) dependent pathway in the horse, effects of the opioid antagonist naloxone (300 mg) and the GnRH agonist buserelin (20 μg) on prolactin and LH secretion were investigated in stallions (n = 22), long-term castrated geldings (n = 15) and non-lactating mares during the luteal phase of the oestrous cycle (n = 16). Blood samples for determination of LH and prolactin concentrations were withdrawn at 15 min intervals for 120 min. After 60 min of sampling, animals were treated with either naloxone, buserelin or saline. In stallions, naloxone significantly increased LH as well as prolactin release (P < 0.05), indicating an opioid inhibition of both hormones, whereas in mares, naloxone stimulated only LH secretion (P < 0.05). No changes in plasma LH or prolactin concentrations after injection of naloxone were found in geldings. In all animal groups, buserelin induced a significant release of LH (P < 0.05) without affecting prolactin. We conclude that endogenous opioids inhibit LH and prolactin release in the horse but the regulation of these two hormones involves independent opioid pathways. These are activated differentially in stallions, geldings and mares. The opioid regulation of prolactin secretion is not mediated via GnRH.  相似文献   

18.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

19.
Administration of charcoal-treated bovine follicular fluid to Damline ewes twice daily (i.v.) from Days 1 to 11 of the luteal phase (Day 0 = oestrus) resulted in a delay in the onset of oestrous behaviour and a significant increase in ovulation rate following cloprostenol-induced luteolysis on Day 12. During follicular fluid treatment plasma levels of FSH in samples withdrawn just before injection of follicular fluid at 09:00 h (i.e. 16 h after previous injection of follicular fluid) were initially suppressed, but by Day 8 of treatment had returned to those of controls. However, the injection of follicular fluid at 09:00 h on Day 8 still caused a significant suppression of FSH as measured during a 6-h sampling period. Basal LH levels were higher throughout treatment due to a significant increase in amplitude and frequency of pulsatile secretion. After cloprostenol-induced luteal regression at the end of treatment on Day 12, plasma levels of FSH increased 4-fold over those of controls and remained higher until the preovulatory LH surge. While LH concentrations were initially higher relative to those of controls, there was no significant difference in the amount of LH released immediately before or during the preovulatory surge. These results suggest that the increase in ovulation rate observed during treatment with bovine follicular fluid is associated with the change in the pattern of gonadotrophin secretion in the luteal and follicular phases of the cycle.  相似文献   

20.
Daily plasma concentrations of FSH, LH, oestradiol-17 beta and progesterone were compared for 12 cycles with a short luteal phase and 19 cycles with a luteal phase of normal length (i.e. cycles in which the luteal phase lasted 12 or more days). FSH and LH concentrations were suppressed in short luteal-phase cycles in the early follicular phase and the length of the follicular phase was prolonged (median duration, 14.5 days, range 13-21 days: compared with 12 days, range 9-17, in control cycles; P less than 0.025). Preovulatory oestradiol-17 beta values and the mid-cycle concentrations of FSH and LH were similar in both groups. Plasma progesterone values in the luteal phase were similar in both groups over the 2nd to 5th days inclusive after the midcycle LH peak but declined in the short luteal phases thereafter. In short luteal-phase cycles, menstruation occurred in the presence of higher levels of oestradiol-17 beta and progesterone than in cycles of normal length and the rise of gonadotrophin in the late luteal phase of the cycle was delayed. These findings suggest that in cycles with a short luteal phase there is a lack of synchrony between the ovarian and menstrual events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号