首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of fluoren-9-yl ethyl amides (2) were synthesized and evaluated for human melatonin MT(1) and MT(2) receptor binding. N-[2-(2,7-dimethoxyfluoren-9-yl)ethyl]propanamide (2b) was selected and evaluated in functional assays measuring intrinsic activity at the human MT(1) and MT(2) receptors and demonstrated full agonism at both receptors. The chronobiotic properties of 2b were demonstrated in both acute and chronic rat models where 2b produced an acute phase advance of 32 min at 1mg/kg and chronically entrained free-running rats with a mean effective dose of 0.23 mg/kg. Compound 2b is significantly less efficacious than melatonin in constricting human coronary artery.  相似文献   

2.
In vivo pharmacological effects of ramelteon (TAK-375), a novel, highly MT1/MT2-selective receptor agonist, were studied in rats to determine ramelteon's ability to reentrain the circadian rhythm after an abrupt phase advance. Experiments were also conducted to assess the potential cognitive side effects of ramelteon and its potential to become a drug of abuse. After an abrupt 8-h phase shift, ramelteon (0.1 and 1 mg/kg, p.o.) and melatonin (10 mg/kg, p.o.) accelerated reentrainment of running wheel activity rhythm to the new lightdark cycle. Ramelteon (3-30 mg/kg, p.o.) and melatonin (10-100 mg/kg, p.o.) did not affect learning or memory in rats tested by the water maze task and the delayed match to position task, although diazepam and triazolam impaired both of the tasks. Neither ramelteon (3-30 mg/kg, p.o.) nor melatonin (10-100 mg/kg, p.o.) demonstrated a rewarding property in the conditioned place-preference test, implying that MT1/MT2 receptor agonists have no abuse potential. In contrast, benzodiazepines and morphine showed rewarding properties in this test. The authors' results suggest that ramelteon may be useful for treatment of circadian rhythm sleep disorders without adverse effects typically associated with benzodiazepine use, such as learning and memory impairment, and drug dependence.  相似文献   

3.
The aim of this study was to identify the melatonin receptor type(s) (MT(1) or MT(2)) mediating circadian clock resetting by melatonin in the mammalian suprachiasmatic nucleus (SCN). Quantitative receptor autoradiography with 2-[(125)I]iodomelatonin and in situ hybridization histochemistry, with either (33)P- or digoxigenin-labeled antisense MT(1) and MT(2) melatonin receptor mRNA oligonucleotide probes, revealed specific expression of both melatonin receptor types in the SCN of inbred Long-Evans rats. The melatonin receptor type mediating phase advances of the circadian rhythm of neuronal firing rate in the SCN slice was assessed using competitive melatonin receptor antagonists, the MT(1)/MT(2) nonselective luzindole and the MT(2)-selective 4-phenyl-2-propionamidotetraline (4P-PDOT). Luzindole and 4P-PDOT (1 nM-1 microM) did not affect circadian phase on their own; however, they blocked both the phase advances (approximately 4 h) in the neuronal firing rate induced by melatonin (3 pM) at temporally distinct times of day [i.e., subjective dusk, circadian time (CT) 10; and dawn, CT 23], as well as the associated increases in protein kinase C activity. We conclude that melatonin mediates phase advances of the SCN circadian clock at both dusk and dawn via activation of MT(2) melatonin receptor signaling.  相似文献   

4.
Melatonin has many protective effects against ischemic stroke, but the underlying neuroprotective mechanisms are not fully understood. Our aim was to explore the relationship between melatonin's neuroprotective effects and activation of the MT2 melatonin receptor in a murine ischemic-stroke model. Male ICR mice were subjected to a transient middle cerebral ischemic/reperfusional injury, and melatonin (5 and 10 mg/kg, ip) was administrated once daily starting 2 h after ischemia. More than 80% of the mice died within 5 days after stroke without treatment. Melatonin treatment significantly improved the survival rates and neural functioning with modestly prolonged life span of the stroke mice by preserving blood-brain barrier (BBB) integrity via a reduction in the enormous amount of stroke-induced free radical production and significant gp91(phox) cell infiltration. These protective effects of melatonin were reversed by pretreatment with MT2 melatonin receptor antagonists (4-phenyl-2-propionamidotetralin (4P-PDOT) and luzindole). Moreover, treatment with melatonin after stroke dramatically enhanced endogenous neurogenesis (doublecortin positive) and cell proliferation (ki67 positive) in the peri-infarct regions. Most ki67-positive cells were nestin-positive and NG2-positive neural stem/progenitor cells that coexpressed two neurodevelopmental proteins (adam11 and adamts20) and the MT2 melatonin receptor. RT-PCR revealed that the gene expression levels of doublecortin, ki67, adamts20, and adam11 are markedly reduced by stroke, but are restored by melatonin treatment; furthermore, pretreatment with 4P-PDOT and luzindole antagonized melatonin's restorative effect. Our results support the hypothesis that melatonin is able to protect mice against stroke by activating MT2 melatonin receptors, which reduces oxidative/inflammatory stress. This results in the preservation of BBB integrity and enhances endogenous neurogenesis by upregulating neurodevelopmental gene/protein expression.  相似文献   

5.
The mammalian epididymis plays an important role in sperm maturation, an important process of male reproduction. Specific high-affinity 2-[(125)I]iodomelatonin binding sites, satisfying the pharmacokinetic properties of specific receptors, have been found in the rat corpus epididymis, suggesting a direct melatonin action on epididymal physiology. Subsequent molecular and cell biology studies have identified these 2-[(125)I]iodomelatonin binding sites to be mt(1) (MEL(1A)) and MT(2) (MEL(1B)) melatonin receptor subtypes. Changes in the binding characteristics of these receptors in the rat corpus epididymis in response to castration and steroid hormones like testosterone and hydrocortisone indicated that these membrane melatonin receptors are biologically functional receptors, whose activities are differentially regulated by testosterone and hydrocortisone. These melatonin receptors are coupled to pertussis toxin (PTX)-sensitive G(i) protein and probably participate in androgenic and adrenergic regulation of rat corpus epididymal epithelial cell functions. Furthermore, rat corpus epididymal epithelial cell proliferation was stimulated by melatonin, whose action was dependent on the concentration and duration of exposure to the hormone. Interestingly, an MT(2) receptor ligand (4-phenyl-2-propionamidotetraline, 4-P-PDOT) induced a stimulatory effect on epididymal epithelial cell proliferation similar to that produced by melatonin. In contrast, a nuclear melatonin receptor agonist (1-[3-allyl-4-oxo-thiazolidine-2-ylidene]-4-methyl-thiosemi-car bazone , CGP52608) and 8-bromo-cAMP inhibited epididymal epithelial cell proliferation. Taken together, our data lead us to postulate that one of the possible physiological functions of melatonin on the rat epididymis is the stimulation of mt(1) and MT(2) melatonin receptors resulting in the inhibition of cAMP signaling and an increase in epithelial cell proliferation.  相似文献   

6.
Cholangiocarcinoma (CCA) is a devastating biliary cancer. Melatonin is synthesized in the pineal gland and peripheral organs from serotonin by two enzymes, serotonin N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT). Cholangiocytes secrete neuroendocrine factors, including serotonin-regulating CCA growth by autocrine mechanisms. Melatonin exerts its effects by interaction with melatonin receptor type 1A/1B (MT1/MT2) receptors. We propose that 1) in CCA, there is decreased expression of AANAT and ASMT and secretion of melatonin, changes that stimulate CCA growth; and 2) in vitro overexpression of AANAT decreases CCA growth. We evaluated the 1) expression of AANAT, ASMT, melatonin, and MT1/MT2 in human nonmalignant and CCA lines and control and CCA biopsy samples; 2) melatonin levels in nonmalignant and CCA lines, and bile and serum from controls and patients with intrahepatic CCA; 3) effect of melatonin on the growth and expression of AANAT/ASMT and MT1/MT2 in CCA lines implanted into nude mice; and 4) effect of AANAT overexpression on the proliferation, apoptosis, and expression of MT1/MT2 in Mz-ChA-1 cells. The expression of AANAT, ASMT, and melatonin decreased, whereas MT1/MT2 expression increased in CCA lines and biopsy samples. Melatonin secretion decreased in the supernatant of CCA lines and bile of CCA patients. Melatonin decreased xenograft CCA tumor growth in nude mice by increased AANAT/ASMT and melatonin, along with reduced MT1/MT2 expression. Overexpression of AANAT in Mz-ChA-1 cells inhibited proliferation and MT1/MT2 expression and increased apoptosis. There is dysregulation of the AANAT/ASMT/melatonin → melatonin receptor axis in CCA, which inhibited melatonin secretion and subsequently enhanced CCA growth.  相似文献   

7.
We assessed the effects of melatonin, N(1)-acetyl-N (2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine (AMK) on neuronal nitric oxide synthase (nNOS) activity in vitro and in rat striatum in vivo. Melatonin and AMK (10(-11)-10(-3) m), but not AFMK, inhibited nNOS activity in vitro in a dose-response manner. The IC(50) value for AMK (70 microm) was significantly lower than for melatonin (>1 mm). A 20% nNOS inhibition was reached with either 10(-9) m melatonin or 10(-11) m AMK. AMK inhibits nNOS by a non-competitive mechanism through its binding to Ca(2+)-calmodulin (CaCaM). The inhibition of nNOS elicited by melatonin, but not by AMK, was blocked with 0.05 mm norharmane, an indoleamine-2,3-dioxygenase inhibitor. In vivo, the potency of AMK to inhibit nNOS activity was higher than that of melatonin, as a 25% reduction in rat striatal nNOS activity was found after the administration of either 10 mg/kg of AMK or 20 mg/kg of melatonin. Also, in vivo, the administration of norharmane blocked the inhibition of nNOS produced by melatonin administration, but not the inhibition produced by AMK. These data reveal that AMK rather than melatonin is the active metabolite against nNOS, which may be inhibited by physiological levels of AMK in the rat striatum.  相似文献   

8.
Pineal hormone melatonin is proposed as a potential treatment for severe sleep disturbances, and various gastrointestinal disorders. It was shown that melatonin increases intestinal motility and influences the activity of myoelectric complexes of the gut. The aim of the study was to evaluate the mechanisms of the effect of exogenous melatonin on gastric emptying rate. Male Sprague-Dawley rats were fitted with gastric cannulas under anesthesia. The rate of gastric emptying of saline was determined after instillation into the gastric fistula, from the volume and phenol red concentrations recovered after 5 min. Melatonin injected intraperitoneally (ip; 0.001-100 mg/kg) delayed gastric emptying rate of saline at 3 and 10 mg/kg doses. When administered ip 15 min before melatonin (10 mg/kg) injections, CCK2 (L-365,260, 1 mg/kg) or 5-HT3 receptor (ramosetrone, 50 microg/kg) blockers abolished melatonin-induced delay in gastric emptying rate, while the blockade of sympathetic ganglia (bretylium tosylate, 15 mg/kg) significantly reduced the delay in gastric emptying rate. CCK1 receptor blocker (L-364,718, 1 mg/kg) had no significant effect on the delaying action of melatonin. Our results indicate that pharmacological doses of melatonin delay gastric emptying via mechanisms that involve CCK2 and 5-HT3 receptors. Moreover, it appears that exogenous melatonin inhibits gastric motility in part by activating sympathetic neurons.  相似文献   

9.
Melatonin, a pineal hormone that induces sleep, has become a popular over-the-counter drug. The cellular effects of melatonin, however, are only beginning to be studied. We have recently shown that stimulation of the MT1 melatonin receptor induces rapid and dramatic cytoskeletal rearrangements in transformed non-neuronal cells (Witt-Enderby et al., Cell. Motil. Cytoskel. 46 (2000) 28). These cytoskeletal changes result in the formation of structures that closely resemble neurites. In this work, we show that the N1E-115 mouse neuroblastoma cell line rapidly responds to melatonin stimulation and forms neurites within 24 h. We also demonstrate that these cells readily bind 2-[125I]iodomelatonin at levels consistent with what is noted for native tissues (B(max)=3.43+/-1.56 fmol/mg protein; K(d)=240 pM). Western analysis shows that these cells possess and express melatonin receptors of the MT1 subtype. Treatment with pertussis toxin eliminates neurite formation whereas treatment with the MT2 subtype-specific activator, BMNEP, does not induce neurite formation. We have previously shown that increases in MEK 1/2 and ERK 1/2 phosphorylation are correlated with the shape changes in transformed CHO cells. Western analysis of the MEK/ERK signaling pathway in N1E-115 cells shows that this pathway is most likely maximally and constitutively stimulated. This may account for the spontaneous production of neurites noted for this cell line after long culture periods. The results of this work show that melatonin receptor stimulation in a neuronal cell type results in the formation of neurites and that the receptors responsible for melatonin-induced neurite formation in N1E-115 cells are most likely of the MT1 subtype.  相似文献   

10.
N-[2-[2-(4-Phenylbutyl)benzofuran-4-yl]cyclopropylmethyl]acetamide 3a was synthesized as an orally bioavailable agonist at MT1 and MT2 melatonin receptors with significantly low vasoconstrictive activity.  相似文献   

11.
A K Ho  C L Chik  M G Joshi  G M Brown 《Life sciences》1985,36(22):2137-2143
Rats housed under diurnal lighting conditions were either injected with isoproterenol (ISO), 0.5 mg/kg subcutaneous (SC) and sacrificed at different times up to 180 minutes afterwards, or injected with different doses of ISO (0.2 mg/kg to 5.0 mg/kg intraperitoneally (IP] and sacrificed 120 minutes later. Pineal N-acetyltransferase (NATase), serum N-acetylserotonin (NAS) and serum melatonin (MT) levels were determined. It was found that both pineal NATase and serum MT responded to the injection with peak increase at 120 minutes after the injection. This increase in pineal NATase and serum MT levels were also found to be dose-dependent. It was also observed that at 30 minutes after ISO injection, the serum MT level already demonstrated a significant increase which preceeded any increase in the pineal NATase activity. The underlying mechanism for this observation remains undetermined. Unlike serum MT and pineal NATase, there were no changes in serum NAS levels after injections of ISO at all the doses tested or up to 180 minutes after injection of the drug at 0.5 mg/kg dose SC. This suggests that serum NAS level is neither regulated by pineal NATase activity nor is the pineal gland the major source of NAS in circulation. This also indicates that serum NAS level is not influenced by beta-adrenergic stimulation.  相似文献   

12.
The synthesis of novel melatonin analogues 3a and 4a-c designed as melatonin receptor ligands is described. Among the newly synthesized ligands, 2-((S)-2-hydroxymethylindolin-1-ylmethyl)-melatonin 4b displayed the highest affinity for MT(1) receptors (K(i)=9.8 nM) and for MT(2) subtype (K(i)=7.8 nM), whereas the rigid pentacyclic ligand 3 showed the highest selectivity towards the MT(2) receptor subtype (K(i)=319.3 nM for MT(1) and K(i)=65.2 nM for MT(2)).  相似文献   

13.
In bile duct-ligated (BDL) rats, large cholangiocytes proliferate by activation of cAMP-dependent signaling. Melatonin, which is secreted from pineal gland as well as extrapineal tissues, regulates cell mitosis by interacting with melatonin receptors (MT1 and MT2) modulating cAMP and clock genes. In the liver, melatonin suppresses oxidative damage and ameliorates fibrosis. No information exists regarding the role of melatonin in the regulation of biliary hyperplasia. We evaluated the mechanisms of action by which melatonin regulates the growth of cholangiocytes. In normal and BDL rats, we determined the hepatic distribution of MT1, MT2, and the clock genes, CLOCK, BMAL1, CRY1, and PER1. Normal and BDL (immediately after BDL) rats were treated in vivo with melatonin before evaluating 1) serum levels of melatonin, bilirubin, and transaminases; 2) intrahepatic bile duct mass (IBDM) in liver sections; and 3) the expression of MT1 and MT2, clock genes, and PKA phosphorylation. In vitro, large cholangiocytes were stimulated with melatonin in the absence/presence of luzindole (MT1/MT2 antagonist) and 4-phenyl-2-propionamidotetralin (MT2 antagonist) before evaluating cell proliferation, cAMP levels, and PKA phosphorylation. Cholangiocytes express MT1 and MT2, CLOCK, BMAL1, CRY1, and PER1 that were all upregulated following BDL. Administration of melatonin to BDL rats decreased IBDM, serum bilirubin and transaminases levels, the expression of all clock genes, cAMP levels, and PKA phosphorylation in cholangiocytes. In vitro, melatonin decreased the proliferation, cAMP levels, and PKA phosphorylation, decreases that were blocked by luzindole. Melatonin may be important in the management of biliary hyperplasia in human cholangiopathies.  相似文献   

14.
Previously, it has been shown that chronic melatonin exposure in MT1-CHO cells results in receptor desensitization while at the same time producing drastic morphological changes. The addition of a depolymerizing agent during the melatonin pretreatment period prevents MT1 receptor desensitization and the changes in cellular morphology. The lack of morphological change in the presence of a depolymerizing agent is easily explained by the inability of the microtubules to polymerize, however, the prevention of receptor desensitization is a little more complex and may involve G-protein activation. The goal of this study was to determine whether melatonin-induced MT1 receptor desensitization is regulated by proteins known to regulate G-protein activation states, beta-tubulin and RGS4,using anti sense knockdown approaches. The expression of RGS4 mRNA in CHO cells was confirmed using RT PCR and successful knockdown of each was confirmed by western blot analysis or quantitative PCR. Pretreatment of MT1-CHO cells, transfected with the nonsense probes and exposed to melatonin, resulted in a desensitization of the receptor, an increase in forskolin-induced cAMP accumulation, an increase in 2-[125I]-iodomelatonin binding and no change in the affinity of melatonin for the MT1 receptor. However, knockdown of either beta-tubulin or RGS4 in MT1-CHO cells followed by pretreatment with melatonin attenuated the desensitization of melatonin receptors, decreased total 2-[125I]-iodomelatonin binding, and did not affect neither the forskolin response nor the affinity of melatonin for the MT1 receptor. Perhaps RGS4 and beta-tubulin modulate Galpha-GDP and Galpha-GTP states thus modulating MT1 melatonin receptor function.  相似文献   

15.
The present study was undertaken to ascertain whether the casein derived bitter tastant Cyclo (Leu-Trp) [CLT] has an affinity or not for the particular receptors of the pineal hormone, melatonin, on the melanophores of a major carp Labeo rohita (Ham.). The bitter tastant CLT, in the dose range of 3.34×10(-16) M to 3.34×10(-4) M, has induced an aggregatory effect but not in a dose dependent manner. Binding of CLT with the receptors may vary at different concentrations. Denervation of the melanophores has shown a complete inhibition of the CLT mediated aggregation. Prazosin has partially inhibited the aggregatory effect of CLT. Moreover, the bitter tastant's response is mediated through the α2 adrenoceptors only at particular dose ranges. The MT1 and MT2 melatonin receptor antagonist luzindole and the MT2 specific antagonist K185 have perfectly blocked the aggregatory effects of CLT. We have found that the CLT mediated aggregatory effect is dependent upon the release of neurotransmitters and the two subtypes of melatonin (MT) receptors (MT1 and MT2) possess a perfect affinity towards the bitter tastant CLT. Our study demands a need to further make a clinical research on the effects of bitter tastants on the physiology of the biological rhythm maintaining hormone melatonin.  相似文献   

16.
褪黑素改善内毒素血症大鼠血管反应性   总被引:17,自引:0,他引:17  
Xing HY  Ling YL  Meng AH  Zhao XY  Huang XL 《生理学报》2005,57(3):367-372
观察褪黑素(melatonin,MT)对脂多糖(lipopolysaccharide,LPS)诱导的体循环和肺循环血管反应性失调的影响,并探讨可能的作用机制。实验分为溶剂对照组、LPS组、LPS+MT组和MT组。制备离体胸主动脉环和肺动脉环,应用血管张力检测技术检测各组血管环对苯肾上腺素(phenylephrine,PE)和乙酰胆碱(acetylcholine,ACh)的反应性并绘制累积剂量反应曲线;制备各组血管组织匀浆,测定丙二醛(malondialhyde,MDA)和超氧化物歧化酶(superoxidedismutes,SOD)含量变化。结果显示:与对照组相比,LPS6h后胸主动脉对PE的收缩反应减弱(P<0.01),对PE(1×10–8~1×10–5mol/L)累积剂量反应曲线下移;而肺动脉对ACh的舒张反应显著下降(P<0.01),对ACh(1×10–8~1×10–5mol/L)累积剂量反应曲线下移。加用MT可显著改善LPS诱导的胸主动脉对缩血管剂PE的低反应性,同时可逆转LPS对肺动脉舒张反应的抑制,LPS+MT组胸主动脉对PE的累积剂量反应曲线和肺动脉对ACh的累积剂量反应曲线位于对照组和LPS组之间;MT还可对抗LPS导致的脂质过氧化,使MDA含量减少,提高抗氧化酶SOD的活性。上述结果提示,MT可改善内毒素血症大鼠的血管反应性失调,抗氧化途径可能是其发挥保护作用的机制之一。  相似文献   

17.
Agomelatine is a novel antidepressant drug with melatonin receptor agonist and 5-HT(2C) receptor antagonist properties. We analyzed whether agomelatine has antioxidant properties. Antioxidant activity of agomelatine (25, 50, or 75 mg/kg, i.p.) or melatonin (50 mg/kg) was investigated by measuring lipid peroxidation levels, nitrite content, and catalase activities in the prefrontal cortex, striatum, and hippocampus of Swiss mice pentylenetetrazole (PTZ) (85 mg/kg, i.p.), pilocarpine (400 mg/kg, i.p.), picrotoxin (PTX) (7 mg/kg, i.p.), or strychnine (75 mg/kg, i.p.) induced seizure models. In the pilocarpine-induced seizure model, all dosages of agomelatine or melatonin showed a significant decrease in TBARS levels and nitrite content in all brain areas when compared to controls. In the strychnine-induced seizure model, all dosages of agomelatine and melatonin decreased TBARS levels in all brain areas, and agomelatine at low doses (25 or 50 mg/kg) and melatonin decreased nitrite contents, but only agomelatine at 25 or 50 mg/kg showed a significant increase in catalase activity in three brain areas when compared to controls. Neither melatonin nor agomelatine at any dose have shown no antioxidant effects on parameters of oxidative stress produced by PTX- or PTZ-induced seizure models when compared to controls. Our results suggest that agomelatine has antioxidant activity as shown in strychnine- or pilocarpine-induced seizure models.  相似文献   

18.
An investigation into the effects of verapamil and some dihydropyridine derivatives on plasma melatonin levels was undertaken in baboons. In a number of separate experiments, groups of young male chacma baboons (mean body weight 13 kg) received intraperitoneal injections of the drugs, under ketamine anaesthesia, roughly 30 minutes prior to the following time points: 1200, 1800, 0000, 0200, 0600 and 1200 h. Lights went off at 1800 h and came on at 0600 h. The drugs used, and their respective dosages (expressed per kg body mass), were verapamil up to 4 mg/kg, nifedipine at 0.2 mg/kg, nitrendipine at 0.5 mg/kg and nisoldipine at 0.1 mg/kg. Blood samples, taken at the said time points, were assayed for melatonin. The nighttime peak of the plasma melatonin cycle was significantly depressed by all three dihydropyridine calcium antagonists (up to 40%), while verapamil, even at the relatively high total dose of 24 mg/kg per day, had no significant effect on the circulating plasma melatonin levels.  相似文献   

19.
It has been demonstrated that melatonin plays important roles in memory improvement and promotes neurogenesis in experimental animals. We examined effects of melatonin on cognitive deficits, neuronal damage, cell proliferation, neuroblast differentiation and neuronal maturation in the mouse dentate gyrus after cotreatment of scopolamine (anticholinergic agent) and melatonin. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally injected for 2 and/or 4 weeks to 8-week-old mice. Scopolamine treatment induced significant cognitive deficits 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly improved spatial learning and short-term memory impairments. Two and 4 weeks after scopolamine treatment, neurons were not damaged/dead in the dentate gyrus, in addition, no neuronal damage/death was shown after cotreatment of scopolamine and melatonin. Ki67 (a marker for cell proliferation)- and doublecortin (a marker for neuroblast differentiation)-positive cells were significantly decreased in the dentate gyrus 2 and 4 weeks after scopolamine treatment, however, cotreatment of scopolamine and melatonin significantly increased Ki67- and doublecortin-positive cells compared with scopolamine-treated group. However, double immunofluorescence for NeuN/BrdU, which indicates newly-generated mature neurons, did not show double-labeled cells (adult neurogenesis) in the dentate gyrus 2 and 4 weeks after cotreatment of scopolamine and melatonin. Our results suggest that melatonin treatment recovers scopolamine-induced spatial learning and short-term memory impairments and restores or increases scopolamine-induced decrease of cell proliferation and neuroblast differentiation, but does not lead to adult neurogenesis (maturation of neurons) in the mouse dentate gyrus following scopolamine treatment.  相似文献   

20.
The aim of the present study was to determine the effect of activation of melatonin receptor sites on the activity of noradrenergic neurons in the C3H/HeN mouse brain. Changes in noradrenergic activity were assessed by measuring norepinephrine (NE) levels in the hypothalamus, frontal cortex, and hippocampus following inhibition of NE synthesis with alpha-methyl-p-tyrosine (alpha-MpT) (300 mg/kg, i.p., 2 h). 6-Chloromelatonin (1-30 mg/kg, i.p.) significantly retarded the alpha-MpT-induced decrease in NE levels in the hypothalamus, but not in hippocampus and frontal cortex. This effect was observed at 30 min and 60 min after 6-chloromelatonin administration and was dose dependent. At noon, when the levels of endogenous melatonin are low, the melatonin receptor antagonist luzindole (30 mg/kg, i.p., 30 min) did not affect the depletion of NE by alpha-MpT; however, it (1-30 mg/kg) completely antagonized the 6-chloromelatonin-induced reduction of NE depletion elicited by alpha-MpT in hypothalamus. These results suggest that activation of melatonin receptor sites in brain of C3H/HeN mouse retarded the depletion of NE elicited by alpha-MpT. At midnight, when the levels of melatonin are high, luzindole (30 mg/kg) significantly accelerated the depletion of NE by alpha-MpT in hypothalamus, but not in frontal cortex or hippocampus, suggesting activation of melatonin receptor sites by endogenous melatonin. We conclude that activation of melatonin receptor sites in C3H/HeN mouse brain by endogenous melatonin inhibits the activity of noradrenergic neurons innervating the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号