首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Signal transduction via protein kinase C (PKC) is closely regulated by its subcellular localization. To map the molecular determinants mediating the C2 domain-dependent translocation of PKCalpha to the plasma membrane, full-length native protein and several point mutants in the Ca(2+)/phosphatidylserine-binding site were tagged with green fluorescent protein and transiently expressed in rat basophilic leukemia cells (RBL-2H3). Substitution of several aspartate residues by asparagine completely abolished Ca(2+)-dependent membrane targeting of PKCalpha. Strikingly, these mutations enabled the mutant proteins to translocate in a diacylglycerol-dependent manner, suggesting that neutralization of charges in the Ca(2+) binding region enables the C1 domain to bind diacylglycerol. In addition, it was demonstrated that the protein residues involved in direct interactions with acidic phospholipids play differential and pivotal roles in the membrane targeting of the enzyme. These findings provide new information on how the C2 domain-dependent membrane targeting of PKCalpha occurs in the presence of physiological stimuli.  相似文献   

2.
The C2 domain of protein kinase Calpha (PKCalpha) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCalpha and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCalpha Ca2+-binding loops (CBLs) and PIP2 binding site (beta-strands 3-4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCalpha C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on beta-strands 3-4, which bind to plasma membrane PIP2.  相似文献   

3.
Protein kinase Cepsilon (PKCepsilon) is a member of the novel PKCs which are activated by acidic phospholipids, diacylglycerol and phorbol esters, but lack the calcium dependence of classical PKC isotypes. The crystal structures of the C2 domain of PKCepsilon, crystallized both in the absence and in the presence of the two acidic phospholipids, 1,2-dicaproyl-sn-phosphatidyl-l-serine (DCPS) and 1,2-dicaproyl-sn-phosphatidic acid (DCPA), have now been determined at 2.1, 1.7 and 2.8 A resolution, respectively. The central feature of the PKCepsilon-C2 domain structure is an eight-stranded, antiparallel, beta-sandwich with a type II topology similar to that of the C2 domains from phospholipase C and from novel PKCdelta. Despite the similar topology, important differences are found between the structures of C2 domains from PKCs delta and epsilon, suggesting they be considered as different PKC subclasses. Site-directed mutagenesis experiments and structural changes in the PKCepsilon-C2 domain from crystals with DCPS or DCPA indicate, though phospholipids were not visible in these structures, that loops joining strands beta1-beta2 and beta5-beta6 participate in the binding to anionic membranes. The different behavior in membrane-binding and activation between PKCepsilon and classical PKCs appears to originate in localized structural changes, which include a major reorganization of the region corresponding to the calcium binding pocket in classical PKCs. A mechanism is proposed for the interaction of the PKCepsilon-C2 domain with model membranes that retains basic features of the docking of C2 domains from classical, calcium-dependent, PKCs.  相似文献   

4.
In view of the interest shown in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) as a second messenger, we studied the activation of protein kinase Calpha by this phosphoinositide. By using two double mutants from two different sites located in the C2 domain of protein kinase Calpha, we have determined and characterized the PtdIns(4,5)P(2)-binding site in the protein, which was found to be important for its activation. Thus, there are two distinct sites in the C2 domain: the first, the lysine-rich cluster located in the beta3- and beta4-sheets and which activates the enzyme through direct binding of PtdIns(4,5)P(2); and the second, the already well described site formed by the Ca(2+)-binding region, which also binds phosphatidylserine and a result of which the enzyme is activated. The results obtained in this work point to a sequential activation model, in which protein kinase Calpha needs Ca(2+) before the PtdIns(4,5)P(2)-dependent activation of the enzyme can occur.  相似文献   

5.
Prothrombin is a major constituent of the blood coagulation cascade and requires phospholipid and Ca2+ for its activation. We have found that phospholipid/Ca(2+)-dependent protein kinase (Protein kinase C) phosphorylates prothrombin and the associated apparent Km value for prothrombin (0.86 microM) is comparable to the Km value reported for most known substrates of protein kinase C. A 2-dimension separation analysis revealed that serine residue was apparently phosphorylated by PKC. The phosphorylation was inhibited by such phosphatidylserine- and/or Ca2+ competitive protein kinase C inhibitors as trifluoperazine, palmitoylcarnitine and gossypol. These results suggest that protein kinase C phosphorylation was involved in the regulation of blood coagulation.  相似文献   

6.
The 38 kDa Ca2+/membrane-binding protein reported to be the dominant substrate of protein kinase C in the extracts of pig neutrophil granulocytes was purified partially and its phosphorylation was investigated. In pig granulocytes type II protein kinase C was the major isoform, while type III isoenzyme was present only as a minor activity. Phosphorylation of the 38 kDa protein was performed with rat brain protein kinase C. Each of the three isoenzymes purified from rat brain was able to phosphorylate this protein, though on the conditions used in our experiments it was phosphorylated most intensively by type II protein kinase C. A phospholipid-dependent, but Ca2(+)-independent, form of protein kinase C was demonstrated with the aid of a synthetic oligopeptide substrate. Phosphorylation of the 38 kDa protein by the Ca2(+)-independent enzyme proceeded exclusively in the presence of Ca2+. The Ca2+ concentration necessary for the phosphorylation of the 38 kDa by either form of protein kinase C was by orders of magnitude higher than that required for the activation of protein kinase C.  相似文献   

7.
8.
Protein kinase Calpha (PKCalpha), which is known to be critical for the control of many cellular processes, was submitted to site-directed mutagenesis in order to test the functionality of several amino acidic residues. Thus, D187, D246 and D248, all of which are located at the Ca(2+) binding site of the C2 domain, were substituted by N. Subcellular fractionation experiments demonstrated that these mutations are important for both Ca(2+)-dependent and diacylglycerol-dependent membrane binding. The mutants are not able to phosphorylate typical PKC substrates, such as histone and myelin basic protein. Furthermore, using increasing concentrations of dioleylglycerol, one of the mutants (D246/248N) was able to recover total activity although the amounts of dioleylglycerol it required were larger than those required by wild type protein. On the other hand, the other mutants (D187N and D187/246/248) only recovered 50% of their activity. These data suggest that there is a relationship between the C1 domain, where dioleylglycerol binds, and the C2 domain, and that this relationship is very important for enzyme activation. These findings led us to propose a mechanism for PKCalpha activation, where C1 and C2 domains cannot be considered independent membrane binding modules.  相似文献   

9.
The goal of this study was to determine whether the protein kinase A (PKA) responsiveness of the cardiac L-type Ca(2+) current (ICa) is affected during transient increases in intracellular Ca(2+) concentration. Ventricular myocytes were isolated from 3- to 4-day-old neonatal rats and cultured on aligned collagen thin gels. When measured in 1 or 2 mM Ca(2+) external solution, the aligned myocytes displayed a large ICa that was weakly regulated (20% increase) during stimulation of PKA by 2 microM forskolin. In contrast, application of forskolin caused a 100% increase in ICa when the external Ca(2+) concentration was reduced to 0.5 mM or replaced with Ba(2+). This Ca(2+)-dependent inhibition was also observed when the cells were treated with 1 microM isoproterenol, 100 microM 3-isobutyl-1-methylxanthine, or 500 microM 8-bromo-cAMP. The responsiveness of ICa to PKA was restored during intracellular dialysis with a calmodulin (CaM) inhibitory peptide but not during treatment with inhibitors of protein kinase C, Ca(2+)/CaM-dependent protein kinase, or calcineurin. Adenoviral-mediated expression of a CaM molecule with mutations in all four Ca(2+)-binding sites also increased the PKA sensitivity of ICa. Finally, adult mouse ventricular myocytes displayed a greater response to forskolin and cAMP in external Ba(2+). Thus Ca(2+) entering the myocyte through the voltage-gated Ca(2+) channel regulates the PKA responsiveness of ICa.  相似文献   

10.
The effects of tyrosine protein kinases (TK) on the L-type Ca(2+) current (I(Ca)) were examined in whole cell patch-clamped human atrial myocytes. The TK inhibitors genistein (50 microM), lavendustin A (50 microM), and tyrphostin 23 (50 microM) stimulated I(Ca) by 132 +/- 18% (P < 0.001), 116 +/- 18% (P < 0.05), and 60 +/- 6% (P < 0.001), respectively. After I(Ca) stimulation by genistein, external application of isoproterenol (1 microM) caused an additional increase in I(Ca). Dialyzing the cells with a protein kinase A inhibitor suppressed the effect of isoproterenol on I(Ca) but not that of genistein. Inhibition of protein kinase C (PKC) by pretreatment of cells with 100 nM staurosporine or 100 nM calphostin C prevented the effects of genistein on I(Ca). The PKC activator phorbol 12-myristate 13-acetate (PMA), after an initial stimulation (75 +/- 17%, P < 0.05), decreased I(Ca) (-36 +/- 5%, P < 0.001). Once the inhibitory effect of PMA on I(Ca) had stabilized, genistein strongly stimulated the current (323 +/- 25%, P < 0.05). Pretreating myocytes with genistein reduced the inhibitory effect of PMA on I(Ca). We conclude that, in human atrial myocytes, TK inhibit I(Ca) via a mechanism that involves PKC.  相似文献   

11.
The contribution of protein kinase C to the contraction by oxytocin of rat uterine longitudinal smooth muscle in Ca(2+)-free solution was investigated. Immunological analysis revealed that type II (beta) and III (alpha) protein kinase C subspecies were present in rat uterine smooth muscle. The pretreatment of a diacylglycerol kinase inhibitor R59022 to accumulate diacylglycerol potentiated the Ca(2+)-independent contraction. The contractile activity was diminished with the depletion of protein kinase C, when the contraction was evoked repeatedly by oxytocin during the prolonged exposure to a tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggested the involvement of protein kinase C in oxytocin-induced contraction in Ca(2+)-free solution.  相似文献   

12.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

13.
14.
Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.  相似文献   

15.
16.
Selective protein kinase C (PKC) activators and inhibitors were used to investigate the involvement of specific PKC isoforms in the modulation of voltage-sensitive Ca(2+) channels (VSCCs) in bovine adrenal chromaffin cells. Exposure to the phorbol ester phorbol-12,13-dibutyrate (PDBu) inhibited the Ca(2+) currents elicited by depolarizing voltage steps. This inhibition was occluded by the PKC-specific inhibitor Ro 31-8220 but remained unaffected by G? 6976, a selective inhibitor of conventional PKC isoforms. PDBu treatment caused the translocation of PKC-alpha and -epsilon isoforms from cytosol to membranes. PKC-iota and -zeta showed no signs of translocation. It is concluded that VSCCs are specifically inhibited by the activation of PKC-epsilon in chromaffin cells. This may be relevant to the action of phospholipase-linked receptors involved in the control of Ca(2+) influx, both in catecholaminergic cells and other cell types.  相似文献   

17.
Dynamic changes in intracellular free Ca(2+) concentrations ([Ca(2+)](i)s) control many important cellular events, including binding of Ca(2+)-calmodulin (Ca(2+)-CaM) and phosphorylation by protein kinase C (PKC). The two signals compete for the same domains in certain substrates, such as myristoylated alanine-rich PKC-substrate (MARCKS). To observe the convergence and relative time of arrival of CaM and PKC signals at their shared domain of MARCKS, we need to image cells that are loaded with more than two fluorescent dyes at a reasonable speed. We have developed a simple and powerful multicolor imaging system using conventional fluorescence microscopy. The epifluorescence configuration uses a glass reflector and rotating filter wheels for excitation and emission paths. As it is free of dichroic (multichroic) mirrors, multiple fluorescence images can be acquired rapidly regardless of the colors of fluorophores. We visualized Ca(2+)-CaM and PKC together with the dynamics of their common target, MARCKS, in single live cells. Receptor-activation resulted in translocation of MARCKS from the plasma membrane to cytosol through its phosphorylation by PKC. By observing fluorescence resonance energy transfer, we also obtained direct evidence that Ca(2+)-CaM binds MARCKS to drag it away from the membrane in circumstances when Ca(2+)-mobilization predominates over PKC activation.  相似文献   

18.
It has been proposed that N-terminal myristoylation of calcineurin B is necessary for the membrane association of calcineurin. We tested the effects of Ca(2+) and myristoylation on the binding of calcineurin B alone or heterodimeric calcineurin to phosphatidylserine or phosphatidylcholine vesicles. In the presence of excess phosphatidylserine, 50-60% of total calcineurin associated with phosphatidylserine in a Ca(2+)-sensitive manner. Calcineurin did not associate with phosphatidylcholine. Calcineurin containing both the alpha and beta catalytic subunit isoforms bound to phosphatidylserine. Calmodulin interfered with the association of calcineurin with phosphatidylserine. In the presence of Ca(2+), myristoylated calcineurin B alone did not bind to phosphatidylcholine but did bind to phosphatidylserine, although to a lesser extent than the calcineurin heterodimer. Non-myristoylated calcineurin B alone, or calcineurin containing non-myristoylated calcineurin B did not associate with phosphatidylserine in the presence of Ca(2+). These results indicate: (i) Both isoforms of calcineurin bind to phosphatidylserine. (ii) A phospholipid binding site is located on the calcineurin B subunit. (iii) Calcineurin B myristoylation is required for the Ca(2+)-sensitive binding of calcineurin to phosphatidylserine vesicles in vitro.  相似文献   

19.
Modulation of Ca(2+) channels by neurotransmitters provides critical control of neuronal excitability and synaptic strength. Little is known about regulation of the Ca(2+) efflux pathways that counterbalance Ca(2+) influx in neurons. We demonstrate that bradykinin and ATP significantly facilitate removal of action potential-induced Ca(2+) loads by stimulating plasma membrane Ca(2+)-ATPases (PMCAs) in rat sensory neurons. This effect was mimicked in the soma and axonal varicosities by phorbol esters and was blocked by antagonists of protein kinase C (PKC). Reduced expression of PMCA isoform 4 abolished, and overexpression of isoform 4b enhanced, PKC-dependent facilitation of Ca(2+) efflux. This acceleration of PMCA4 underlies the shortening of the action potential afterhyperpolarization produced by activation of bradykinin and purinergic receptors. Thus, isoform-specific modulation of PMCA-mediated Ca(2+) efflux represents a novel mechanism to control excitability in sensory neurons.  相似文献   

20.
In skinned myocardium, cyclic AMP-dependent protein kinase A (PKA)-catalyzed phosphorylation of cardiac myosin-binding protein C (cMyBP-C) and cardiac troponin I (cTnI) is associated with a reduction in the Ca(2+) responsiveness of myofilaments and an acceleration in the kinetics of cross-bridge cycling, although the respective contribution of these two proteins remains controversial. To further examine the relative roles that cTnI and cMyBP-C phosphorylation play in altering myocardial function, we determined the Ca(2+) sensitivity of force (pCa(50)) and the activation dependence of the rate of force redevelopment (k(tr)) in control and PKA-treated mouse myocardium (isolated in the presence of 2,3-butanedione monoxime) expressing: (a) phosphorylatable cTnI and cMyBP-C (wild type [WT]), (b) phosphorylatable cTnI on a cMyBP-C-null background (cMyBP-C(-/-)), (c) nonphosphorylatable cTnI with serines(23/24/43/45) and threonine(144) mutated to alanines (cTnI(Ala5)), and (d) nonphosphorylatable cTnI on a cMyBP-C-null background (cTnI(Ala5)/cMyBP-C(-/-)). Here, PKA treatment decreased pCa(50) in WT, cTnI(Ala5), and cMyBP-C(-/-) myocardium by 0.13, 0.08, and 0.09 pCa units, respectively, but had no effect in cTnI(Ala5)/cMyBP-C(-/-) myocardium. In WT and cTnI(Ala5) myocardium, PKA treatment also increased k(tr) at submaximal levels of activation; however, PKA treatment did not have an effect on k(tr) in cMyBP-C(-/-) or cTnI(Ala5)/cMyBP-C(-/-) myocardium. In addition, reconstitution of cTnI(Ala5)/cMyBP-C(-/-) myocardium with recombinant cMyBP-C restored the effects of PKA treatment on pCa(50) and k(tr) reported in cTnI(Ala5) myocardium. Collectively, these results indicate that the attenuation in myofilament force response to PKA occurs as a result of both cTnI and cMyBP-C phosphorylation, and that the reduction in pCa(50) mediated by cMyBP-C phosphorylation most likely arises from an accelerated cross-bridge cycling kinetics partly as a result of an increased rate constant of cross-bridge detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号