首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chromatography of soluble human and rat platelet guanylate cyclases (105000 g supernatants) on DEAE-cellulose in 50 mM Tris HCl buffer, containing 0.22 M NaCl, has yielded virtually identical elution profiles, each with two protein peaks (I and II). Only peak II was found to have guanylate cyclase activity. Experiments with human platelets showed that inactive protein peak I inhibited the activity of guanylate cyclase preparation (peak II) and restored the already lost ability of the enzyme to be activated by sodium nitroprusside. In experiments with rat platelets, inactive fraction I had no effect on guanylate cyclase activity (peak II), and the enzyme was not activated by sodium nitroprusside either before or after DEAE-cellulose. 105000g supernatant of human platelets had an absorbance maximum at 415 nm (Soret band), which disappeared from the spectrum of the active fraction (II) but was found in the spectrum of the inactive (inhibitory) fraction I. Experiments with rat platelets demonstrated the absence of Soret band in the corresponding spectra. It was concluded that, contrary to the generally accepted notion, heme is not a prosthetic group of the soluble rat platelet guanylate cyclase.  相似文献   

2.
Analysis of soluble guanylate cyclase of rat platelets (105,000 g supernatant) revealed no activating effect of sodium nitroprusside on the enzyme activity. Dithiothreitol (2 x 10(-4) H) added to the sample stimulated the basal activity of guanylate cyclase in the presence of Mg2+ but did not induce the enzyme activation by sodium nitroprusside. Hemoglobin added to the enzyme did not influence its basal activity or the activating effect of sodium nitroprusside. DEAE-Cellulose chromatography of the 105,000 g supernatant revealed two protein peaks, I and II, of which only peak II possessed a guanylate cyclase activity. Fraction I added to a partly purified enzyme did not change the enzyme activity, nor did it enhance the sodium nitroprusside-induced activation of guanylate cyclase. Spectral analysis of the 105,000 g supernatant revealed that the presence of a maximum at 415-425 nm (Soret band) depended on the degree of plasma hemolysis. In the absence of hemolysis the Soret band was unobserved either in the 105,000 g supernatant or in fractions I and II. It is suggested that rat platelet guanylate cyclase is present in these cells in a heme-deficient state.  相似文献   

3.
The effect of carnosine on activation of human platelet soluble guanylate cyclase has been studied in 105,000 g supernatants and partially purified haem-deficient enzyme preparations. In the 105,000 g supernatant carnosine (1 mM) inhibited (by about 70%) the enzyme activation caused by sodium nitroprusside. In partially purified haem-deficient guanylate cyclase preparations the inhibition of enzyme activation by sodium nitroprusside was 86%; further addition of carnosine had no effect on the enzyme activity. The strength of the activating effect of protoporphyrin IX on partially purified haem-deficient guanylate cyclase did not differ from that for the 105,000 g supernatant; this stimulating effect did not change after carnosine addition. A conclusion is drawn that the inhibiting effect of carnosine on the ability of guanylate cyclase to be activated by sodium nitroprusside is due to the dipeptide interaction with the guanylate cyclase haem.  相似文献   

4.
The influence of ambroxol (a mucolytic agent) on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside (SNP) and Sin-1) were investigated. Ambroxol in the range of concentrations from 0.1 to 10 ??M had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the SNP-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values of 3.9 and 2.1 ??M, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin (an antimalarial agent) on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1?100 ??M) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the SNP-induced activation of human platelet guanylate cyclase with the IC50 value of 5.6 ??M. Artemisinin (10 ??M) also inhibited (by 71 ± 4.0%) the activation of the enzyme by a thiol-dependent NO-donor, the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 ??M), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the signaling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.  相似文献   

5.
The Lubrol-dispersed guanylate cyclase from sea urchin sperm was purified and isolated essentially free of detergent by GTP affinity chromatography, DEAE-Sephadex chromatography, and gel filtration. After removal of the detergent, the enzyme remained in solution in the presence of 20% glycerol. The specific activity of the purified enzyme was about 12 mumol of guanosine 3':5'-monophosphate (cyclic GMP) formed - min-1 - mg of protein-1 at 30 degrees, an activity about 4600 times that of a soluble guanylate cyclase purified recently from Escherichia coli (Macchia V., Varrone, S., Weissbach, H., Miller, D.L., and Pastan, I. (1975) J. Biol. Chem. 250, 6214-6217). The cyclic GMP phosphodiesterase activity was negligible and adenosine 3':5'-monophosphate (cyclic AMP) phosphodiesterase was not detectable in the purified preparation. Cyclic AMP formation from ATP occurred at a rate of 0.002% of that of guanylate cyclase. In the absence of phosphodiesterase or guanosine triphosphatase inhibitors, 100% of the added GTP was converted to cyclic GMP. The purified enzyme required Mn2+ for maximum activity, the relative rates in the presence of Mg2+ or Ca2+ being less than 0.6% of the rates with Mn2+. The purified enzyme displayed classical Michaelis-Menten kinetics with respect to MnGTP (apparent Km is approximately equal to 170 muM) in contrast to the positively cooperative kinetic behavior displayed by the unpurified, detergent-dispersed, or particulate guanylate cyclase. The molecular weight of the purified enzyme was approximately 182,000 as estimated on Bio-Gel A-0.5m columns equilibrated in the presence or absence of 0.1 M NaCl. The unpurified, detergent-dispersed enzyme also migrated with an apparent molecular weight of 182,000 on columns equilibrated with 0.5% Lubrol WX and 0.1 M NaCl, but it migrated as a large aggregate (molecular weight is greater than 5 X 10(5)) on columns equilibrated in the absence of either the detergent of NaCl. After gel filtration, the unpurified, dispersed enzyme still yielded positive cooperative kinetic patterns as a function of MnGTP. Na dodecyl-SO4 gel electrophoresis of the enzyme after the DEAE-Sephadex or the gel filtration steps resulted in two major protein bands with estimated molecular weights of 118,000 and 75,000. Whether or not these protein bands represent the subunit molecular weights of guanylate cyclase is unknown at present.  相似文献   

6.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

7.
Guanylate cyclase activities were identified in a soluble fraction and a particular fraction obtained from the Arteria coronaria of cattle. The Km-value was 1.0 +/- 0.7 - 10(-4) M for the enzyme substrate complex of the guanylate cyclase of the soluble fraction and 9.2 +/- 1.5 - 10(-4) M for the particular fraction. For the enzyme activity of the soluble fraction Mn++ cannot be replaced by Ca++ or Mg++, whereas for the enzyme activity of the particulate fraction Mn++ can be replaced by Mg++ but not by Ca++. The guanylate cyclase of the particulate fraction can be activated by acetylcholine. This activation can be cancelled by atropine. Acetylcholine exerts no influence on the guanylate cyclase activity of the soluble fraction. ATP inhibits the enzyme activities of both fractions whereas cAMP shows no influence on the guanylate cyclase activity.  相似文献   

8.
The effect of N-(omega-aminoalkyl) derivatives of naphthalene-1-sulfamide on the activity of soluble guanylate cyclase and on human platelet aggregation at the first (reversible) step of the guanylate cyclase reaction was studied. Low (approximately 10(-7)-10(-6) M) concentrations of the above compounds were shown to stimulate the guanylate cyclase activity; some derivatives caused simultaneous inhibition of platelet aggregation induced by ADP. Some fragments of the chemical structure of the molecules responsible for the enzyme activity regulation in the tested systems were identified. The naphthalene-1-sulfamide derivatives carrying 6-aminohexyl or 8-amino-octyl groups of the sulfamide substituent as well as chlorine atom at positions 4 or 5 of the naphthalene ring appeared to be the most potent activators of platelet guanylate cyclase and inhibitors of platelet aggregation at the reversible step of the enzymatic reaction.  相似文献   

9.
The intensity of lipid peroxidation in the microsomal membranes of rat liver influences the activity of "soluble" guanylate cyclase preparations. The increased production of lipid peroxidation products after addition of Fe(II) results in a rise the guanylate cyclase activity; alpha-tocopherol causes a decrease of this activity. An addition of fatty acids hydroperoxides at concentrations above 10(-6) M activates both the membrane-bound and "soluble" guanylate cyclase. It was shown that the hydroperoxide degradation products--carbonyl derivatives responsible for the activation, at concentrations above 10(-9) M provide for activation of the enzyme. The blocking of the SH-groups in "soluble" enzyme preparations by N-ethylmaleimide completely prevents the enzyme activation by carbonyl.  相似文献   

10.
Structural analogs of atriopeptins (APs) were compared for their ability to activate particulate guanylate cyclase and bind to specific receptors in rat adrenal membranes. All analogs tested increase Vmax without altering the concentration of substrate required for half-maximum activity or the positive coperativity exhibited by the enzyme. Maximum velocities (pmoles of cGMP produced per min per mg protein) achieved in the absence and presence of APs were 128.3 +/- 6.6 and 283.8 +/- 20.6 using Mn2+-GTP, and 53.7 +/- 3.7 and 149.9 +/- 7.6 using Mg2+-GTP as the substrate, respectively. Although all APs were equally efficacious in activating the enzyme, their rank potency was ANF (8-33) = AP III = AP II greater than AP I when either divalent cation was used as the cofactor. The EC50 for activation of guanylate cyclase by AP I was about 10(-7) M, while that for the other peptides was about 10(-8) M, using either divalent cation cofactor. 125I-labeled ANF bound to rat adrenal membranes with a KD of 5.10(-10) M. Although all APs were equally efficacious in competing with labeled ANF for receptor binding, their rank potency was identical to that for enzyme activation. The Ki for AP I was about 10(-8) M, while that for the other peptides was about 10(-10) M. These data suggest that the carboxy terminal Phe-Arg present in the AP analogs except AP I and critical for biological and receptor-binding activity are also important in coupling receptor-ligand interaction with guanylate cyclase activation. The correlation between the rank order potency for receptor binding, enzyme activation, and the reported physiological actions of APs support the suggestion of a functional coupling between these proteins.  相似文献   

11.
The characteristics of myocardial guanylate cyclase (GTP pyrophosphatelyase, EC 4.6.1.2) were studied. Specific activity of the myocardial enzyme in five vertebrate species was guinea pig greater than man greater than cat greater than dog greater than rat. In the guinea pig, guanylate cyclase activity was uniformly distributed throughout the anatomical regions of the heart. The major portion of the enzyme activity was retrieved in the supernatant fraction after centrifugation at 12 000 times g. The Km for GTP was similar in supernatant (0.12 mM) and particulate (0.21 mM) preparations, although the Ka for Mn2+ in particulate preparations (0.3-0.6 mM) was less than that observed for guanylate cyclase in the supernatant fraction (0.8-2.0 mM). ATP competitively inhibited supernatant and particulate activity. Addition of 0.005-10.0 mM Ca2+ to assay incubations did not enhance guanylate cyclase activity. Suspension of 105 000 times g supernatant guanylate cyclase preparations with membrane lipids or phosphatidylserine stimulated activity 1.4-4.3 fold, whereas similar treatment of particulate preparations caused little alteration of enzyme activity. Addition of the cholinergic agonists acetylcholine, carbachol or methacholine (10-4-10-8 M) to homogenate, supernatant, particulate and disrupted tissue slice preparations in the presence of 0.0012-1.2 mM GTP, 0.3-10.0 mM Mn2+ and 0.005-10.0 mM Ca2+ or 0.0012-1.2 mM ATP did not stimulate guanylate cyclase activity. Similarly, further stimulation of guanylate cyclase activity was not elicited when enzyme-lipid suspensions were assayed in the presence of cholinergic agents.  相似文献   

12.
The ability of benzodifuroxan (BDF) to activate human platelet guanylate cyclase was investigated. The maximal stimulatory effect (1160 +/- 86%) was observed at 0.01 mM concentration. Sodium nitroprusside produced the same stimulatory effect (1220 +/- 100%) but at a higher concentration (0.1 mM). 1-H-[1,2,4,]-Oxadiazolo[4, 3-alpha]quinoxalin-1-one (ODQ), an inhibitor of NO-dependent guanylate cyclase activation, attenuated the stimulatory effect of BDF (0.01 mM) by 75% and that of sodium nitroprusside (0.1 mM) by 80%. Increasing dithiothreitol concentration in the sample from 2. 10-6 to 2.10-4 M increased the stimulatory effect of BDF 2.7-fold. The possible involvement of sulfhydryl groups of low-molecular-weight thiols and guanylate cyclase in thiol-dependent activation of the enzyme is discussed. We have also found that BDF is a highly effective inhibitor of ADP-induced human platelet aggregation with IC50 of 6.10-8 M. The effect of sodium nitroprusside was much weaker (IC50, 5.10-5 M).  相似文献   

13.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate cyclase activation as a function of arachidonic acid concentration were obtained with a Ka value of 2.1 muM. A Hill coefficient of 0.98 was obtained indicating that one fatty acid binding site is present for each catalytic site. Concentrations of arachidonic acid in excess of 10 muM caused less than maximal stimulation. Dihomo-gamma-linolenic acid and two polyunsaturated 22 carbon fatty acids stimulated the activity of guanylate cyclase to the same degree as did arachidonic acid. The methyl ester of arachidonic acid was much less effective. Diene, monoene, and saturated fatty acids of various carbon chain lengths as well as prostaglandins E1, E2, and F2alpha, had little or no effect. These data indicate that the structural determined required for stimulation by fatty acids of soluble platelet guanylate cyclase is a 1,4,7-octatriene group with its first double bond in the omega6 position. This structural group is similar to the substrate specificity determinants of fatty acid cyclooxygenase, the first enzyme of the prostaglandin synthetase complex. However, conversion of arachidonic acid to a metabolite of the cyclooxygenase pathway did not appear to be required for activation of the cyclase since activation occurred in the 105,000 X g supernatant fraction and pretreatment of this fraction with aspirin did not alter the ability of arachidonic acid to activate guanylate cyclase. Kinetic studies showed that the stimulation of guanylate cyclase by arachidonic acid is primarily an effect on maximal velocity. Arachidonic acid did not alter the concentration of free Mn2+ required for optimal activity. It is concluded that the activity of the soluble form of guanylate cyclase in cell-free preparations of human platelets can be increased by a lipid-protein interaction involving specific polyunsaturated fatty acids.  相似文献   

14.
Guanylate cyclase from the rat renal medulla is found in both the soluble and particulate fractions of the cell. Sucrose density gradient centrifugation and gel filtration in H2O and D2O indicate that the enzyme from the soluble cell fraction has the following properties: S20w, 6.3 S; Stokes radius, 54 A; partial specific volume, 0.75 ml/g; mass, 154,000 daltons; f/fo, 1.4; axial ratio (prolate ellipsoid), 7. The addition of 0.1% Lubrol PX to this fraction activates the enzyme and changes thartial specific volume, 0.74 ml/g; mass, 148,000 daltons; f/fo, 1.6; axial ratio (prolate ellipsoid), 11. These findings show that detergent activates the enzyme by changing its conformation and not simply by dispersing nonsedimentable membrane fragments. The dimensions of this guanylate cyclase in detergent are very similar to those of detergent-solubilized adenylate cyclase from the same tissue (Neer, E.J. (1974) J. Biol. Chem. 249, 6527-6531). Guanylate cyclase can be solubilized from the particulate cell fraction with 1% Lubrol PX but has properties quite different from those of the guanylate cyclase in the soluble cell fraction. It is a large aggregate with a value of S20,w of about 10 S, Stokes radius of 65 A, and a mass of approximately 300,000 daltons. However, the peaks of guanylate cyclase activity in column effluents and sucrose density gradients are very broad indicating a mixture of different size proteins. The conditions used to solubilize guanylate cyclase from the particulate fraction also solubilize adenylate cyclase, and the two activities can be separated on the same sucrose gradient. Studies of this sort require a rapid, accurate guanylate cyclase assay. We have developed an assay for guanylate cyclase activity which meets these criteria by adapting the competitive protein binding assay for guanosine cyclic 3':5' monophosphate originally described by Murad et al. (Murad, F., Manganiello, V., and Vaughn, M. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 736-739).  相似文献   

15.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

16.
Preincubation (50 min, 0 degree C) with nitroprusside increases 12-fold the activity of human platelet guanylate cyclase. The stimulating effect of nitroprusside is enhanced two-fold by dithiothreitol (2 mM) and by 60% by hemoglobin (20 micrograms/ml). Storage of guanylate cyclase preparations (105000 g supernatant) for 2-3 days at 4 degrees C causes a progressive increase of the enzyme activity and diminishes the stimulating effect of nitroprusside. After storage of guanylate cyclase preparations for 3 days, hemoglobin (20 micrograms/ml) augments the stimulating effect of nitroprusside by 130%. It is concluded that the degree of activation of guanylate cyclase by nitroprusside reflects the functional state of the enzyme.  相似文献   

17.
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.  相似文献   

18.
We have investigated the effects of NaCl and GTP on the inhibition of platelet adenylate cyclase by 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine (1-octadecyl-2-acetyl-G-3-PC), using particulate fractions from human and rabbit platelets that had been frozen and thawed in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetate to prevent Ca2+-dependent proteolysis. When 10 μM GTP was present, 100 mM NaCl stimulated the activity of the rabbit enzyme 5.6-fold and that of the human enzyme 2.2-fold. Under these conditions, maximum inhibitions of 90% and 64% were obtained on addition of 100 nM 1-octadecyl-2-acetyl-G-3-PC to rabbit and human preparations, respectively. These inhibitions resulted partly from an NaCl-independent inhibition of basal enzyme activity and partly from reversal of the stimulatory effect of NaCl. The relative abilities of the chlorides of different monovalent cations to enhance inhibition of rabbit platelet adenylate cyclase were: NaCl >LiCl >KCl >choline chloride. NaCl also increased the concentrations of 1-octadecyl-2-acetyl-G-3-PC required for half-maximal inhibition of adenylate cyclase but this action of NaCl did not correlate with its stimulatory effect on enzyme activity. After particulate fractions from platelets of either species were washed, 10 μM GTP inhibited basal adenylate cyclase activity in the absence of NaCl but stimulated the enzyme in the presence of NaCl. Inhibition of adenylate cyclase by 1-octadecyl-2-acetyl-G-3-PC was then either enhanced by GTP (rabbit material) or completely dependent on added GTP (human material). Stimulation of the activity of the washed human preparations by NaCl required GTP, but concentrations lower than required for potentiation of the inhibitory effect of 1-octadecyl-2-acetyl-G-3-PC by NaCl were effective.  相似文献   

19.
Two types of soluble cAMP-dependent protein kinase (I and II) were isolated from rabbit myometrium cytosol at functional rest and characterized. In pregnancy, protein kinase is represented by type II alone. Upon delivery, one isoform of the enzyme was detected, which was eluted from a DEAE-cellulose column with 0.15-0.22 M. NaCl. During the postnatal period, the elution profile of the enzyme is made up of two protein bands, one fraction being eluted with 0.15-0.22 M NaCl (93% of total enzyme content), and the other one being represented by a minor component eluted with 0.07-0.09 M. NaCl (7%). In terms off isoenzyme activity, main kinetic properties, ability to autophosphorylate and Kass for cAMP, the protein kinase isolated during delivery and the major protein kinase fraction obtained in the postnatal period can be related to protein kinases type II. Quantitative and qualitative expression of two types of soluble cAMP-dependent protein kinase from rabbit myometrium isolated at different functional states may be due to differences in their biological activity.  相似文献   

20.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains the CYR1 polypeptide, responsible for catalyzing formation of cyclic AMP (cAMP) from ATP, and two RAS polypeptides, which mediate stimulation of cAMP synthesis of guanine nucleotides. By analogy to the mammalian enzyme, models of yeast adenylate cyclase have depicted the enzyme as a membrane protein. We have concluded that adenylate cyclase is only peripherally bound to the yeast membrane, based on the following criteria: (i) substantial activity was found in cytoplasmic fractions; (ii) activity was released from membranes by the addition of 0.5 M NaCl; (iii) in the presence of 0.5 M NaCl, activity in detergent extracts had hydrodynamic properties identical to those of cytosolic or NaCl-extracted enzyme; (iv) antibodies to yeast adenylate cyclase identified a full-length adenylate cyclase in both membrane and cytosol fractions; and (v) activity from both cytosolic fractions and NaCl extracts could be functionally reconstituted into membranes lacking adenylate cyclase activity. The binding of adenylate cyclase to the membrane may have regulatory significance; the fraction of activity associated with the membrane increased as cultures approached stationary phase. In addition, binding of adenylate cyclase to membranes appeared to be inhibited by cAMP. These results indicate the existence of a protein anchoring adenylate cyclase to the membrane. The identity of this protein remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号