首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of the forage source on ruminal fermentation in vitro was investigated for fine (F) and coarse (C) milled diets, using a modified Hohenheim gas production test and a semi-continuous rumen simulation technique (Rusitec). It was hypothesised that the replacement of maize silage by grass silage might lead to associative effects and that interactions related to particle size variation could occur. Five diets with a maize silage to grass silage ratio of 100 : 0, 79 : 21, 52 : 48, 24 : 76 and 0 : 100 differed in their content of CP and carbohydrate fractions, as well as digestible crude nutrients, derived from a digestibility trial with wether sheep. For in vitro investigations, the diets were ground to pass a sieve of either 1 mm (F) or 4 mm (C) perforation. Cumulative gas production was recorded during 93 h of incubation and its capacity decreased with increasing proportion of grass silage in the diet. Across all diets, gas production was delayed in C treatments compared with F treatments. Degradation of crude nutrients and detergent fibre fractions was determined in a Rusitec system. Daily amounts of NH3-N and short-chain fatty acids (SCFA) were measured in the effluent. Degradation of organic matter (OM) and fibre fractions, as well as amounts of NH3-N, increased with stepwise replacement of maize silage by grass silage. Degradability of CP was unaffected by diet composition, as well as total SCFA production. In contrast to the results of the gas production test, degradation of OM and CP was higher in C than in F treatments, accompanied by higher amounts of NH3-N and SCFA. Interactions of silage ratio and particle size were rare. It was concluded that the stepwise replacement of maize silage by grass silage might lead to a linear response of most fermentation characteristics in vitro. This linear effect was also supported by total tract digestibility data. However, further investigations with silages of variable quality seem to be necessary.  相似文献   

3.
4.
Production of molecules with toxic activity by genetically transformed symbiotic bacteria of pest insects may serve as a powerful approach to biological control. The symbiont, Enterobacter gergoviae, isolated from the gut of the pink bollworm (PBW), has been transformed to express Cyt1A, a cytolytic protein toxin lethal to mosquito and black fly larvae, as a model system. These transgenic bacteria might be used to spread genes encoding insecticidal proteins to populations of agricultural insects or as replacement for chemical insecticides such as malathion used in bait formulation to control specific insect pests, because of extreme public pressure against organophosphate pesticide spraying. Received: 27 November 2000 / Accepted: 29 December 2000  相似文献   

5.
Unique aspects of the grass cell wall   总被引:1,自引:0,他引:1  
Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are linked together, and the abundance and importance of pectins, proteins and phenolic compounds. Recent advances, spurred by the availability of genomic resources for several plant species, include the characterization of cellulose synthase like (Csl) gene families that are unique to the grasses and the demonstration that members of one of those gene families, CslF, are responsible for making the mixed linkage glucans that are unique to the order Poales.  相似文献   

6.
酶降解烟叶中细胞壁物质   总被引:21,自引:1,他引:20  
烟叶中以细胞壁物质存在的碳水化合物在燃吸时产生不良影响,在一定条件下向烟叶中施加一定量的纤维素酶和果胶酶,使部分细胞壁物质降解为水溶性糖,烟质得到改善,纤维素酶和果胶酶最佳用量均为每克烟叶30u酶量(活力),最佳作用条件为;烟叶水分25%,作用温度50℃,作用时间4h,且在真空条件下可使细胞壁物质降解更有效,可降解烟叶中细胞壁物质10%左右,烟叶的评吸质量得到明显改善。  相似文献   

7.
8.
A dual-flow continuous culture fermenter system was used to investigate ruminal fermentation in response to increased by-product gypsum application rate of three forages. The treatments included 0, 22, 45, and 90 tonnes/ha by-product gypsum applied to grass plots and 0, 22, and 45 tonnes/ha by-product gypsum applied to corn plots. Forage was harvested to represent grass pasture (GP), grass hay (GH), and corn silage (CS), dried, ground, and fed to fermenters at a rate of 60 g dry matter (DM)/day. Organic matter (OM) and neutral detergent fiber (aNDF) digestibilities, rumen pH, total volatile fatty acid (VFA) production, and N metabolism were not affected by gypsum application rate for all forage types. The GH had greater sulfur content than recommended as the maximum tolerable level by the National Research Council (NRC). The results of this study indicate that ruminal fermentation was not compromised when by-product gypsum was applied to GP, GH, or CS at rates up to 90 tonnes/ha. By-product gypsum application to pastures and crops shows promise as an economical soil amendment to reduce dissolved phosphorus loss in runoff, although potential animal health issues should be further evaluated.  相似文献   

9.
Silage tests to study reductions of antiphysiological compounds (caffeine and polyphenols) of fresh coffee pulp during the anaerobic fermentation were done. A concrete silo divided in compartments, with a total capacity of 9 tons of fresh material was utilized. The silage periods ranged between 99-224 days and the following materials were ensiled: 1) coffee pulp, 2) coffee pulp with sugar cane molasses, 3) coffee pulp with a mixture of molasses and ammonia and 4) screw pressed coffee pulp with molasses. Reductions in caffeine, total polyphenols and condensed polyphenols ranged between 13-63%, 28-70% and 51-81% respectively.It was concluded that in the case of coffee pulp, silage presents and ideal method to preserve the material and partially reduce the contents of antiphysiological compounds.  相似文献   

10.
Zusammenfassung Die Beimischung von mäßigen Mengen von Mehl verschiedener Getreidearten in Silage fördert die Milchsäuregärung nicht in nennenswertem Grad, da rohe Stärke nur in unbedeutendem Umfang von den Amylasen (hauptsächlich -Amylasen) des Getreidemehls oder des Grünfutters in für Milchsäurebakterien vergärbaren Zucker hydrolysiert werden kann. Durch -Amylase, welches Enzym in Malz in großen Mengen vorkommt, wird dagegen die rohe Stärke derart angegriffen, daß dadurch in der Silage ein fortgesetzter Abbau zu Milchsäure durch die sich dort befindenden Milchsäurebakterien erfolgt.Durch Beimischung verhältnismäßig geringer Mengen enzymreichen Malzmehles ist es demnach unter praktischen Bedingungen möglich, einen großen Teil der Stärke, welche dem Futter mit den verschiedenen Getreidemehlen zugeführt wurde, den Milchsäurebakterien zugänglich zu machen. Die starke amylolytische Enzymaktivität bei Mischungen von Malz-und Getreidemehl ist ein additiver Effekt von der -Amylase des Malzes und der -Amylase des Malzes, des Getreides und des Grünfutters.  相似文献   

11.
Zusammenfassung Kohlenhydrat-Zusatzmittel dienen bei der natürlichen Gärfutterbereitung einerseits als Nährstoffe für die Mikroorganismen, andererseits beeinflussen sie die Feuchtigkeit des Gärfutters durch ihr Absorptionvermögen.Bei der Milchsäuregärung kann Zucker vollständig ausgenützt werden, Stärke und Cellulose dagenen nicht, oder nur unbedeutend. Zusatz von Gerstenmalz hat wegen seines höheren Zuckerinhaltes und wegen seiner diastasewirkung einen wesentlich besseren Effekt als Gerstegrütze.Malz, Grütze und Cellulose besitzen ein hohes Absorptionsvermögen und können dadurcheine günstige Wirkung bei der Gärfutterbereitung ausüben.

These studies are still in progress. We are indebted to the Swedish Foundation: Fonden för främjande av forskinings- och försöksverksamheten på jordbrukets område, for generous financial support.  相似文献   

12.
Zusammenfassung Die Menge vergärbarer Kohlenhydrate in Klee und Luzerne ist meistens zu gering, um eine zureichende Milchsäuregärung zu gewährleisten. Nur ein geringer Teil der gesamten Kohlenhydrate des Grünfutters wird zu Milchsäure vergoren. Durch Hydrolyse kann ein Teil der nicht direkt vergärbaren Kohlenhydrate für die Milchsäurebakterien zugänglich werden. Eine solche Hydrolyse scheint bei der Grünfuttergärung vor sich zu gehen, besonders bei einem Material mit relativ hohem Trockensubstanzgehalt, wahrscheinlich weil bei den hohenph-Werten, die in solchem Grünfutter vorliegen, die Pflanzen- und Bakterien-Carbohydrasen aktiv sind und weil die Carbohydrasen produzierenden Bakterien am Anfang der Gärung gut wachsen.Zusatz von verschiedenen Zuckerarten, wie Glucose, Maltose, Saccharose und auch Dextrin, begünstigen die Milchsäuregärung. Verschiedene Stärkearten, in fester Form fein verteilt zugesetzt, werden von den Pflanzen- und Bakterienamylasen nicht oder nur unbedeutend angegriffen und können deshalb durch die Milchsäurebakterien nicht vergoren werden. Malzamylasen vermögen dagegen solche Stärkearten zu hydrolysieren und sind im Grünfutter hoch aktiv. In allen Versuchen begünstigt deshalb Zusatz von Malz oder Malz + Stärke die Milchsäuregärung in hohem Grade. Wahrscheinlich vermögen die Amylasen und die übrigen Carbohydrasen des Malzes auch einen Teil der Polysaccharide des Pflanzenmaterials zu hydrolysieren.  相似文献   

13.
Both laboratory-prepared and sterile farm silage was found to support growth of Paecilomyces sp. and patulin production. The formation of patulin was affected by the levels of yeast present in the silage, and it was found that there was an inverse relationship between yeast population levels and patulin concentration.The commercial silage additive, Sylade had a greater lethal effect on yeast and fungi than Add F, the latter allowing the formation of patulin by Paecilomyces sp. in the silage.  相似文献   

14.
15.
Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass‐derived lignocellulose processing industry.  相似文献   

16.
Xie S  Lawlor PG  Frost JP  Hu Z  Zhan X 《Bioresource technology》2011,102(10):5728-5733
Anaerobic co-digestion of concentrated pig manure (PM) with grass silage (GS) at five different PM to GS volatile solid (VS) ratios of 1:0, 3:1, 1:1, 1:3 and 0:1 was evaluated by examining operation stability and methane (CH4) production potentials. The highest specific CH4 yields were 304.2 and 302.8 ml CH4/g VS at PM to GS ratios of 3:1 and 1:1, respectively. The digestion systems failed at the ratio of 0:1. The lag phase lasted 29.5, 28.1, 24.6 and 21.3 days at the ratios of 1:0, 3:1, 1:1 and 1:3, respectively. The daily methane yield was linearly correlated with the acetic acid concentration, indicating methane production was probably associated with acetoclastic methanogenesis. The hydrolysis constant linearly decreased with increasing the fraction of GS in the feedstock. This study recommends applying the PM to GS ratio of 1:1 in practice due to a high specific methane yield and a short lag phase.  相似文献   

17.
Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P < 0.1) whereas starch and neutral detergent fibre digestibility declined (P < 0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P < 0.01) with a commensurate reduction in rumen pH (P < 0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P < 0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.  相似文献   

18.
Yang CM 《Bioresource technology》2005,96(12):1419-1424
Preservation of soybean milk residue (SMR) by ensiling with peanut hulls (PEH) and subsequent utilization of silage by mixed ruminal microorganisms were investigated. Treatments were combinations of SMR with PEH at the following ratios: 100:0, 78:22, 71:29, and 60:40 (fresh weight basis). After eight weeks of ensiling, silage lactic acid, crude protein, ether extract, and non-fiber carbohydrates were highest when SMR was ensiled alone and reduced as amounts of SMR decreased. Similar trends were observed for silage in vitro dry matter digestibility, and gas and volatile fatty acid production by ruminal microorganisms. Conversely, silage pH, dry matter, neutral detergent fiber, acid detergent fiber, cellulose, and lignin increased accordingly. The ensiling treatment appeared to alter silage cell wall composition. In particular, silage treated with PEH at the low level (78:22) resulted in reduced fiber contents and lignification. The silage (SMR:PEH=78:22) had enhanced efficiency of both silage fermentation and in vitro ruminal fermentation pattern.  相似文献   

19.
Beet pulp contains high amounts of pectins that can reduce the risk of rumen disorders compared to using feedstuffs high in starch. The objective was to study the effects of inclusion of ensiled pressed beet pulp in total mixed rations (TMR) for high-yielding dairy cows. Two TMR containing no or about 20% (on dry matter (DM) basis) beet pulp silage were used. The beet pulp silage mainly replaced maize silage and corn cob silage. The TMR were intentionally equal in the concentrations of energy and utilisable crude protein (CP) at the duodenum. TMR were fed to 39 and 40 dairy cows, respectively, for 118 days. The average daily milk yield was about 43 kg/day. No significant differences in milk yield and milk fat or milk protein content were detected. DM intake of cows was significantly reduced by the inclusion of beet pulp silage (23.0 v. 24.5 kg/day). However, a digestibility study, separately conducted with sheep, showed a significantly higher organic matter digestibility and metabolisable energy concentration for the TMR that contained beet pulp silage. In vitro gas production kinetics indicated that the intensity of fermentation was lower in the TMR that contained beet pulp silage. In vitro production of short-chain fatty acids, studied using a Rusitec, did not differ between the TMR. However, the inclusion of beet pulp silage in the ration caused a significant reduction in the efficiency of microbial CP synthesis in vitro. The amino acid profile of microbial protein remained unchanged. It was concluded that beet pulp silage has specific effects on ruminal fermentation that may depress feed intake of cows but improve digestibility. An inclusion of beet pulp silage of up to 20% of DM in rations for high-yielding dairy cows is possible without significant effects on milk yield and milk protein or milk fat.  相似文献   

20.
Metabolite profiles of lactic acid bacteria in grass silage   总被引:2,自引:0,他引:2  
The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml(-1) for two of the three test organisms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号