首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human nectin1 (hNectin1), an adhesion molecule belonging to the nectin family of the immunoglobulin superfamily, mediates entry of herpes simplex virus (HSV) into cells. The hNectin1 domain that mediates virus entry into cells and also binds glycoprotein D (gD) has been localized to the first N-terminal V-type domain. The poliovirus receptor (PVR) is a structural homolog to nectins, but it cannot function as an HSV entry receptor. hNectin1-PVR chimeras were constructed to functionally locate the site on hNectin1 involved in HSV entry (HSV entry site). The epitope recognized by monoclonal antibody (MAb) R1.302, which is able to block HSV entry, was also located. The chimeric receptors were designed to preserve the overall structure of the V domain. The HSV entry activity mapped entirely to the hNectin1 portion located between residues 64 and 94 (64-94), likely to encode the C, C', and C" beta-strands and intervening loops. In turn, this site consisted of two portions: one with low-level basal activity for HSV entry (77-94), and one immediately upstream (residues 64 to 76) which greatly enhanced the HSV entry activity of the downstream region. The gD-binding site mapped substantially to the same site, whereas the MAb R1.302 epitope also required a further downstream portion (95-102). The involvement of the 64-76 portion is at difference with previous indirect mapping results that were based on competitive binding studies (C. Krummenacher et al., J. Virol. 74:10863-10872, 2000). The A, A', B, D, E, F, and G beta-strands and intervening loops did not appear to play any role in HSV entry. According to the predicted three-dimensional structure of PVR, the C C' C" site is located peripherally in the V domain and very likely represents an accessible portion at the cell surface.  相似文献   

2.
Glycoprotein D (gD) is the receptor binding protein of herpes simplex virus (HSV) and binds to at least two distinct protein receptors, herpesvirus entry mediator (HVEM) and nectin-1. While both receptor binding regions are found within the first 234 amino acids, a crystal structure shows that the C terminus of the gD ectodomain normally occludes the receptor binding sites. Receptor binding must therefore displace the C terminus, and this conformational change is postulated to be required for inducing fusion via gB and gH/gL. When cysteine residues are introduced at positions 37 and 302 of gD, a disulfide bond is formed that stabilizes the C terminus and prevents binding to either receptor. We speculated that if disulfide bonds were engineered further upstream, receptor binding might be separated from the induction of fusion. To test this, we made five additional double cysteine mutants, each potentially introducing a disulfide bond between the ectodomain C terminus and the core of the gD ectodomain. The two mutants predicted to impose the greatest constraint were unable to bind receptors or mediate cell-cell fusion. However, the three mutants with the most flexible C terminus bound well to both HVEM and nectin-1. Two of these mutants were impaired in cell-cell fusion and null-virus complementation. Importantly, a third mutant in this group was nonfunctional in both assays. This mutant clearly separates the role of gD in triggering fusion from its role in receptor binding. Based upon the properties of the panel of mutants we conclude that fusion requires greater flexibility of the gD ectodomain C terminus than does receptor binding.  相似文献   

3.
Studies of herpes simplex virus type 1 (HSV-1) thymidine (dThd) kinase (TK) crystal structures show that purine and pyrimidine bases occupy distinct positions in the active site but approximately the same geometric plane. The presence of a bulky side chain, such as tyrosine at position 167, would not be sterically favorable for pyrimidine or pyrimidine nucleoside analogue binding, whereas purine nucleoside analogues would be less affected because they are located further away from the phenylalanine side chain. Site-directed mutagenesis of the conserved Ala-167 and Ala-168 residues in HSV-1 TK resulted in a wide variety of differential affinities and catalytic activities in the presence of the natural substrate dThd and the purine nucleoside analogue drug ganciclovir (GCV), depending on the nature of the amino acid mutation. A168H- and A167F-mutated HSV-1 TK enzymes turned out to have a virtually complete knock-out of dThd kinase activity (at least approximately 4-5 orders of magnitude lower) presumably due to a steric clash between the mutated amino acid and the dThd ring. In contrast, a full preservation of the GCV (and other purine nucleoside analogues) kinase activity was achieved for A168H TK. The enzyme mutants also markedly lost their binding capacity for dThd and showed a substantially diminished feedback inhibition by thymidine 5'-triphosphate. The side chain size at position 168 seems to play a less important role regarding GCV or dThd selectivity than at position 167. Instead, the nitrogen-containing side chains from A168H and A168K seem necessary for efficient ligand discrimination. This explains why A168H-mutated HSV-1 TK fully preserves its GCV kinase activity (Vmax/Km 4-fold higher than wild-type HSV-1 TK), although still showing a severely compromised dThd kinase activity (Vmax/Km 3-4 orders of magnitude lower than wild-type HSV-1 TK).  相似文献   

4.
We have previously reported the unique properties of a receptor for amphotropic murine leukemia viruses (A-MuLVs) expressed on Chinese hamster E36 cells (C.A. Wilson, K.B. Farrell, and M.V. Eiden, J. Virol. 68:7697-7703, 1994). This receptor, HaPiT2 (formerly designated EAR), in contrast to the human form of the A-MuLV receptor (PiT2), functions as a receptor not only for A-MuLVs but also for gibbon ape leukemia virus (GALV). Comparison of the deduced amino acid sequences of the HaPiT2 and PiT2 proteins suggested that differences in the amino acid composition of the extracellular region(s) of the hamster and human proteins account for their functional differences. We substituted extracellular regions of HaPiT2 for those of PiT2 to map the region of the HaPiT2 protein required for GALV receptor function. Only those PiT2-HaPiT2 chimeric receptors containing the fourth and fifth extracellular regions of HaPiT2 functioned as GALV receptors. We have now determined that the substitution of a single amino acid residue, glutamic acid, for the lysine residue at position 522 in the fourth extracellular region of the PiT2 protein is sufficient to render PiT2 functional as a GALV receptor.  相似文献   

5.
6.
Herpesviruses have an icosahedral nucleocapsid surrounded by an amorphous tegument and a lipoprotein envelope. The tegument comprises at least 20 proteins destined for delivery into the host cell. As the tegument does not have a regular structure, the question arises of how its proteins are recruited. The herpes simplex virus 1 (HSV-1) tegument is known to contact the capsid at its vertices, and two proteins, UL36 and UL37, have been identified as candidates for this interaction. We show that the interaction is mediated exclusively by UL36. HSV-1 nucleocapsids extracted from virions shed their UL37 upon incubation at 37°C. Cryo-electron microscopy (cryo-EM) analysis of capsids with and without UL37 reveals the same penton-capping density in both cases. As no other tegument proteins are retained in significant amounts, it follows that this density feature (~100 kDa) represents the ordered portion of UL36 (336 kDa). It binds between neighboring UL19 protrusions and to an adjacent UL17 molecule. These observations support the hypothesis that UL36 plays a major role in the tegumentation of the virion, providing a flexible scaffold to which other tegument proteins, including UL37, bind. They also indicate how sequential conformational changes in the maturing nucleocapsid control the ordered binding, first of UL25/UL17 and then of UL36.  相似文献   

7.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

8.
The effect of neomycin, a phosphoinositide-binding aminoglycoside, on herpes simplex virus type 1 (HSV-1) infection of BHK cells was studied. We showed earlier that it specifically inhibits HSV-1 production but not HSV-2 production (Langeland et al., Biochem Biophys. Res. Commun. 141:198-203, 1986). We now show that neomycin had no effect on cellular protein synthesis, as judged by the appearance of 35S-labeled polypeptides separated by polyacrylamide gel electrophoresis. Virus-induced polypeptides, however, were strongly inhibited at neomycin concentrations above 2 mM. Comparison among different aminoglycosides showed a variation in inhibition of HSV-1 production that paralleled the cationic charge of the aminoglycosides. HSV-1 receptor binding at 4 degrees C was completely inhibited by neomycin. At 37 degrees C both receptor binding and internalization, as measured by an indirect assay, appeared to be inhibited by more than 90%. The effect of neomycin on the infection was almost immediate upon the addition of the drug and preceded virus internalization. Possible mechanisms of the neomycin effect are discussed.  相似文献   

9.
Glycoprotein D (gD) interacts with two alternative protein receptors, nectin1 and HveA, to mediate herpes simplex virus (HSV) entry into cells. Fusion of the envelope with the plasma membrane requires, in addition to gD, glycoproteins gB, gH, and gL. Coexpression of the four glycoproteins (gD, gB, gH, and gL) promotes cell-cell fusion. gD delivered in trans is also capable of blocking the apoptosis induced by gD deletion viruses grown either in noncomplementing cells (gD(-/-)) or in complementing cells (gD(-/+)). While ectopic expression of cation-independent mannose-6 phosphate receptor blocks apoptosis induced by both stocks, other requirements differ. Thus, apoptosis induced by gD(-/-) virus is blocked by full-length gD (or two gD fragments reconstituting a full-length molecule), whereas ectopic expression of the gD ectodomain is sufficient to block apoptosis induced by gD(-/+) virus. In this report we took advantage of a set of gD insertion-deletion mutants to map the domains of gD required to block apoptosis by gD(-/-) and gD(-/+) viruses and those involved in cell-cell fusion. The mutations that resulted in failure to block apoptosis were the same for gD(-/-) and gD(-/+) viruses and were located in three sites, one within the immunoglobulin-type core region (residues 125, 126, and 151), one in the upstream connector region (residues 34 and 43), and one in the C-terminal portion of the ectodomain (residue 277). A mutant that carried amino acid substitutions at the three glycosylation sites failed to block apoptosis but behaved like wild-type gD in all other assays. The mutations that inhibited polykaryocyte formation were located in the upstream connector region (residues 34 and 43), at the alpha1 helix (residue 77), in the immunoglobulin core and downstream regions (residue 151 and 187), and at the alpha3 helix (residues 243 and 246). Binding of soluble nectin1-Fc to cells expressing the mutant gDs was generally affected by the same mutations that affected fusion, with one notable exception (Delta277-310), which affected fusion without hampering nectin1 binding. This deletion likely identifies a region of gD involved in fusion activity at a post-nectin1-binding step. We conclude that whereas mutations that affected all functions (e.g., upstream connector region and residue 151) may be detrimental to overall gD structure, the mutations that affect specific activities identify domains of gD involved in the interactions with entry receptors and fusogenic glycoproteins and with cellular proteins required to block apoptosis. The evidence that glycosylation of gD is required for blocking apoptosis supports the conclusion that the interacting protein is the mannose-6 phosphate receptor.  相似文献   

10.
The ectodomain of the gD protein of herpes simplex viruses (HSVs) plays an important role in viral entry by binding to specific cellular coreceptors and mediating viral entry to the host cells. In the present study, we isolated RNA aptamers (aptamer-1 and aptamer-5) that specifically bind to the gD protein of HSV-1 with high affinity and are able to discriminate the gD protein of a different virus, HSV-2. Aptamer-1 efficiently interfered with the interaction between the gD protein and the HSV-1 target cell receptor (HVEM) in a dose-dependent manner. The 50% effective concentration (EC(50)) of aptamer-1 was estimated to be in the nanomolar range (60 nM). Furthermore, aptamer-1 was analyzed for anti-HSV-1 activity by using plaque assays, and it efficiently inhibited viral entry with an estimated K(i) of 0.8 μM. To expand the future applications of aptamer-1, a shorter variant was designed by using both mapping and boundary analyses, resulting in the mini-1 aptamer (44-mer). Compared to the full-length aptamer, mini-1 had at least as high an affinity, specificity, and ability to interfere with gD-HVEM interactions. These studies suggest that the mini-1 aptamer could be explored further as an anti-HSV-1 topical therapy designed to prevent the risk of acquiring HSV-1 infection through physical contact.  相似文献   

11.
12.
The herpes simplex virus (HSV) ICP47 protein inhibits the MHC class I antigen presentation pathway by inhibiting the transporter associated with antigen presentation (TAP) which translocates peptides across the endoplasmic reticulum membrane. At present, ICP47 is the only inhibitor of TAP. Here, we show that ICP47 produced in bacteria can block human, but not mouse, TAP, and that heat denaturation of ICP47 has no effect on its ability to block TAP. ICP47 inhibited peptide binding to TAP without affecting ATP binding, consistent with previous observations that the peptide binding and ATP binding sites of TAP are distinct. ICP47 bound to TAP with a higher affinity (KD approximately 5 x 10(-8) M) than did peptides, and ICP47 did not dissociate from TAP. ICP47 was not transported by TAP and remained sensitive to proteases added from the cytosolic surface of the membrane. Peptides acted as competitive inhibitors of ICP47 binding to TAP, and this inhibition required a 100- to 1000-fold molar excess of peptide. These results demonstrate that ICP47 binds to a site which includes the peptide binding domain of TAP and remains bound to this site in a stable fashion.  相似文献   

13.
Leptomycin B (LMB) is a specific inhibitor of Crm1-dependent nuclear export of proteins. The replication of herpes simplex virus (HSV) is normally highly sensitive to LMB; a resistant HSV variant, however, was isolated by serial passages of the virus. Analysis of marker transfer and viral DNA sequences revealed that a single amino acid substitution within the ICP27 gene is responsible for conferring this resistance.  相似文献   

14.
We determined the essentiality of all amino acid replacements within an 11-codon sequence in the putative nucleoside-binding site of thymidine kinase encoded by herpes simplex virus type 1. This involved partial randomization of 11 codons in the gene to create a degenerate library, followed by genetic complementation using a tk- Escherichia coli strain and selection of unnatural active enzymes. We produced and tested 53,000 variants; of which 190 were found to be biologically active. Sequence analyses of functional variants revealed a high degree of flexibility in accommodating different types of amino acid substitutions in this region. However, no replacement was tolerated at proline-173, whereas tyrosine-172 could be replaced by only phenylalanine. To further define permissible substitutions at specified positions, we constructed a library with randomization at only four test codons. We produced and tested 600,000 variants; of which only 5 were active. Again proline-173 was conserved, and only tyrosine and phenylalanine were found at position 172. The identification of these conserved amino acids should provide important insights into the understanding of the structural basis of catalysis by this enzyme.  相似文献   

15.
We have shown that a drug-resistant mutant from a clinical isolate of herpes simplex virus contains a single point mutation in the DNA polymerase gene that confers resistance to both acyclovir and foscarnet. The mutated amino acid is located within a distinct conserved region shared among alpha-like DNA polymerases which we designate region VII. We infer that these conserved sequences are directly or indirectly involved in the recognition and binding of nucleotide and PPi substrates.  相似文献   

16.
A 46-kDa receptor, coxsackievirus-adenovirus (Ad) receptor (CAR), mediates cell attachment of a number of different Ad serotypes; however, not all Ad serotypes utilize this receptor for infection. Moreover, the precise amino acid sequences in the Ad fiber protein that mediate cell attachment have yet to be identified. We investigated the interaction of subgroup D Ads with human ocular cells. Ad serotype 37 (Ad37), a virus associated with epidemic keratoconjunctivitis, but not a closely related virus serotype, Ad19p, exhibited preferential binding to and infection of human conjunctival cells. A single amino acid substitution in the Ad19p fiber distal domain (knob), Glu240 to Lys, conferred binding to conjunctival cells, while the reverse substitution in the Ad37 fiber abrogated cell binding. These findings provide new information on the fiber sequences that regulate Ad host cell tropism.  相似文献   

17.
The receptor binding specificity of influenza viruses may be important for host restriction of human and avian viruses. Here, we show that the hemagglutinin (HA) of the virus that caused the 1918 influenza pandemic has strain-specific differences in its receptor binding specificity. The A/South Carolina/1/18 HA preferentially binds the alpha2,6 sialic acid (human) cellular receptor, whereas the A/New York/1/18 HA, which differs by only one amino acid, binds both the alpha2,6 and the alpha2,3 sialic acid (avian) cellular receptors. Compared to the conserved consensus sequence in the receptor binding site of avian HAs, only a single amino acid at position 190 was changed in the A/New York/1/18 HA. Mutation of this single amino acid back to the avian consensus resulted in a preference for the avian receptor.  相似文献   

18.
Liu  Yaqing  Chi  Miaomiao  Liu  Ying  Wen  Hongling  Zhao  Li  Song  Yanyan  Liu  Na  Wang  Zhiyu 《Virology journal》2019,16(1):1-6
Dengue is an important mosquito-borne disease. There is currently only one licensed vaccine for dengue prevention. The vaccine provides higher efficacy in pre-vaccination dengue-seropositive persons but a higher risk of subsequent more severe dengue in dengue-seronegative persons. It is recommended that the dengue vaccine may be given in dengue-seropositive individuals or as mass vaccination without individual pre-vaccination screening in areas where the dengue seroprevalence is > 80% in children aged 9 years. We evaluated a dengue specific immunoglobulin G monoclonal antibody-based capture enzyme-linked immunosorbent assay (MAb-ELISA) in the diagnosis of previous dengue infection using serum samples from the cohort study in Ratchaburi Province, Thailand. The MAb-ELISA was compared to 70% plaque reduction neutralization test (PRNT70) in 453 serum samples from children aged 3–11 years in Ratchaburi Province, Thailand. The sensitivity and specificity of MAb-ELISA at the positive to negative (P/N) ratio cut-off level of > 3 were both 0.91 in the diagnosis of previous dengue infection, compared to PRNT70. The false positivity was mainly in Japanese encephalitis (JE) seropositive subjects. This research provides evidence that MAb-ELISA is useful for dengue seroprevalence study and dengue pre-vaccination screening. JE seropositivity was the major cause of false positive result in the study population.  相似文献   

19.
20.
The herpes simplex virus type 1(JMP) [HSV-1(JMP)] mutant was selected for its ability to grow and form plaques in receptor-negative J cells. It enters J cells through a novel gD-dependent pathway, independent of all known HSV receptors, nectin1, nectin2, and HveA. Evidence that the pathway is dependent on a nectin3 binding site on HSV-1(JMP) and requires three mutations in gD rests on the following. We derived monoclonal antibodies to nectin3 and show that J cells express nectin3. HSV-1(JMP) entry and cell-to-cell spread were inhibited by soluble nectin3-Fc, demonstrating that virions carry a binding site for nectin3. The site is either directly involved in HSV-1(JMP) entry, or nectin3 binding to its site affects the gD domains involved in entry (entry site). HSV-1(JMP) entry and cell-to-cell spread in J cells were also inhibited by soluble nectin1-Fc, showing that the nectin1 binding site on gD(JMP) overlaps with the entry site or that nectin1 binding to gD affects the entry site. gD(JMP) carries three mutations, S140N, R340H, and Q344R. The latter two lie in the C tail and are present in the parental HSV-1(MP). HSV-1 strain R5000 carrying the S140N substitution was not infectious in J cells, indicating that this substitution was not sufficient. We constructed two recombinants, one carrying the three substitutions and the other carrying the two C-tail substitutions. Only the first recombinant infected J cells with an efficiency similar to that of HSV-1(JMP), indicating that the three mutations are required for the novel entry pathway. The results highlight plasticity in gD which accounts for changes in receptor usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号