首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glucocorticoid-induced apoptosis is exploited clinically for the treatment of hematologic malignancies. Determining the required molecular events for glucocorticoid-induced apoptosis will identify resistance mechanisms and suggest strategies for overcoming resistance. In this study, we found that glucocorticoid treatment of WEHI7.2 murine thymic lymphoma cells increased the steady-state [H(2)O(2)] and oxidized the intracellular redox environment before cytochrome c release. Removal of glucocorticoids after the H(2)O(2) increase resulted in a 30% clonogenicity; treatment with PEG-CAT increased clonogenicity to 65%. Human leukemia cell lines also showed increased H(2)O(2) in response to glucocorticoids and attenuated apoptosis after PEG-CAT treatment. WEHI7.2 cells that overexpress catalase (CAT2, CAT38) or were selected for resistance to H(2)O(2) (200R) removed enough of the H(2)O(2) generated by glucocorticoids to prevent oxidation of the intracellular redox environment. CAT2, CAT38, and 200R cells showed a 90-100% clonogenicity. The resistant cells maintained pERK survival signaling in response to glucocorticoids, whereas the sensitive cells did not. Treating the resistant cells with a MEK inhibitor sensitized them to glucocorticoids. These data indicate that: (1) an increase in H(2)O(2) is necessary for glucocorticoid-induced apoptosis in lymphoid cells, (2) increased H(2)O(2) removal causes glucocorticoid resistance, and (3) MEK inhibition can sensitize oxidative stress-resistant cells to glucocorticoids.  相似文献   

3.
Peroxiredoxin-3 (Prdx3) is a mitochondrial member of the antioxidant family of thioredoxin peroxidases that uses mitochondrial thioredoxin-2 (Trx2) as a source of reducing equivalents to scavenge hydrogen peroxide (H(2)O(2)). Low levels of H(2)O(2) produced by the mitochondria regulate physiological processes, including cell proliferation, while high levels of H(2)O(2) are toxic to the cell and cause apoptosis. WEHI7.2 thymoma cells with stable overexpression of Prdx3 displayed decreased levels of cellular H(2)O(2) and decreased cell proliferation without a change in basal levels of apoptosis. Prdx3-transfected cells showed a marked resistance to hypoxia-induced H(2)O(2) formation and apoptosis. Prdx3 overexpression also protected the cells against apoptosis caused by H(2)O(2), t-butylhydroperoxide, and the anticancer drug imexon, but not by dexamethasone. Thus, mitochondrial Prdx3 is an important cellular antioxidant that regulates physiological levels of H(2)O(2), leading to decreased cell growth while protecting cells from the apoptosis-inducing effects of high levels of H(2)O(2).  相似文献   

4.
Dexamethasone-treated WEHI7.2 mouse thymoma cells readily undergo apoptosis. WEHI7.2 variants that overexpress catalase (CAT38) or Bcl-2 (Hb12) show a delay or lack of apoptosis, respectively, when treated with dexamethasone. This is accompanied by a delay or lack of cytochrome c release from the mitochondria suggesting that alterations in the signaling phase of apoptosis are responsible for the observed resistance. Because membranes are a rich source of signaling molecules, we have used 31P NMR spectroscopy to compare phospholipids and their metabolites in WEHI7.2, CAT38 and Hb12 cells after dexamethasone treatment. Increased lysophosphatidylcholine (lysoPtdC) content accompanied phosphatidylserine (PtdS) externalization in the WEHI7.2 cells. Both changes were delayed in CAT38 cells suggesting phosphatidylcholine (PtdC) metabolites may play a role in steroid-induced apoptotic signaling. The steroid-resistant Hb12 cells showed a dramatic increase in glycerophosphocholine (GPC) content, suggesting increased phospholipid turnover may contribute to the anti-apoptotic mechanism of Bcl-2.  相似文献   

5.
Glucocorticoids induce apoptosis in lymphocytes by causing the release of cytochrome c into the cytosol; however, the events in the signaling phase between translocation of the steroid-receptor complex to the nucleus and the release of cytochrome c have not been elucidated. Previously, we found that, in response to steroid treatment, WEHI7.2 mouse thymic lymphoma cells overexpressing catalase (CAT38) show delayed apoptosis (delayed cytochrome c release) compared to the parental cells, while Bcl-2 overexpressing cells (Hb12) are protected from steroid-induced apoptosis. In lymphocytes, glucocorticoid treatment decreases glucose uptake. Both glucose deprivation and the attendant ATP drop are known inducers of apoptosis. Therefore, we used (31)P and (1)H NMR spectroscopy to compare metabolic profiles of WEHI7.2, CAT38 and Hb12 cells in the presence and absence of dexamethasone to determine: (1) whether glucocorticoid effects on glucose metabolism contribute to the mechanism of steroid-induced apoptosis; and (2) whether catalase or Bcl-2 overexpression altered metabolism thereby providing a mechanism of steroid resistance. Loss of mitochondrial hexokinase activity was correlated to the induction of apoptosis in WEHI7.2 and CAT38 cells. CAT38 and Hb12 cells have an altered basal metabolism which includes increases in hexokinase activity, lactate production when subcultured into new medium, use of mitochondria for ATP production and potentially increased glutaminolysis. These data suggest that: (1) glucocorticoid effects on glucose metabolism may contribute to the mechanism of steroid-induced lymphocyte apoptosis; and (2) the altered metabolism seen in catalase and Bcl-2 overexpressing cells may contribute to both the steroid resistance and increased tumorigenicity of these variants.  相似文献   

6.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

7.
Using current chemotherapy protocols, over 55% of lymphoma patients fail treatment. Novel agents are needed to improve lymphoma survival. The manganese porphyrin, MnTE-2-PyP(5+), augments glucocorticoid-induced apoptosis in WEHI7.2 murine thymic lymphoma cells, suggesting that it may have potential as a lymphoma therapeutic. However, the mechanism by which MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis is unknown. Previously, we showed that glucocorticoid treatment increases the steady state levels of hydrogen peroxide ([H(2)O(2)](ss)) and oxidizes the redox environment in WEHI7.2 cells. In the current study, we found that when MnTE-2-PyP(5+) is combined with glucocorticoids, it augments dexamethasone-induced oxidative stress however, it does not augment the [H(2)O(2)](ss) levels. The combined treatment depletes GSH, oxidizes the 2GSH:GSSG ratio, and causes protein glutathionylation to a greater extent than glucocorticoid treatment alone. Removal of the glucocorticoid-generated H(2)O(2) or depletion of glutathione by BSO prevents MnTE-2-PyP(5+) from augmenting glucocorticoid-induced apoptosis. In combination with glucocorticoids, MnTE-2-PyP(5+) glutathionylates p65 NF-κB and inhibits NF-κB activity. Inhibition of NF-κB with SN50, an NF- κB inhibitor, enhances glucocorticoid-induced apoptosis to the same extent as MnTE-2-PyP(5+). Taken together, these findings indicate that: 1) H(2)O(2) is important for MnTE-2-PyP(5+) activity; 2) Mn-TE-2-PyP(5+) cycles with GSH; and 3) MnTE-2-PyP(5+) potentiates glucocorticoid-induced apoptosis by glutathionylating and inhibiting critical survival proteins, including NF-κB. In the clinic, over-expression of NF-κB is associated with a poor prognosis in lymphoma. MnTE-2-PyP(5+) may therefore, synergize with glucocorticoids to inhibit NF-κB and improve current treatment.  相似文献   

8.
By manipulation of Cd and Zn concentrations in the medium, several phenotypes, differing in the contents of glutathione (GSH) and metallothionein (Mt), were derived from a parental clone of V79 Chinese hamster fibroblast. In some of these phenotypes, resistance to Cd and cross-resistance to oxidative stress was developed. The highest levels of GSH and Mt were found in cells which were rendered resistant to Cd by stepwise increases of Cd and Zn in the cell medium for over 50 passages. Upon removal of Cd/Zn from the medium of these cells or addition of Cd/Zn to the parental cell medium, changes of cellular GSH and Mt levels occurred to different extents. At the same time, changes in the resistance to Cd and H2O2 were observed. Good linear correlations were observed for Mt levels x resistance to Cd and for GSH levels x resistance to H2O2. Poor linear correlations were found for Mt levels x resistance to H2O2 or for GSH levels x resistance to Cd. Moreover, addition of Zn to the medium produced an increase in Mt content without affecting the GSH content. In this case no cross-resistance to oxidative stress was developed. Therefore, Mt which has been shown to be an excellent antioxidant in in vitro experiments, does not seem to play any major role against oxidative stress in Zn and Cd challenged cells. Most of the cross-resistance to oxidative stress in Cd challenged cells seems to be accounted for by the parallel increase in GSH.  相似文献   

9.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

10.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

11.
F Puskas  P Gergely  K Banki  A Perl 《FASEB journal》2000,14(10):1352-1361
Ascorbic acid, or vitamin C, generally functions as an antioxidant by directly reacting with reactive oxygen intermediates and has a vital role in defenses against oxidative stress. However, ascorbic acid also has pro-oxidant properties and may cause apoptosis of lymphoid and myeloid cells. The present study shows that dehydroascorbate, the oxidized form of vitamin C, stimulates the antioxidant defenses of cells, preferentially importing dehydroascorbate over ascorbate. While 200-800 microM vitamin C caused apoptosis of Jurkat and H9 human T lymphocytes, pretreatment with 200-1000 microM dehydroascorbate stimulated activity of pentose phosphate pathway enzymes glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and transaldolase, elevated intracellular glutathione levels, and inhibited H(2)O(2)-induced changes in mitochondrial transmembrane potential and cell death. A 3. 3-fold maximal glutathione elevation was observed after 48 h stimulation with 800 microM dehydroascorbate. In itself, dehydroascorbate did not affect cytosolic or mitochondrial reactive oxygen intermediate levels as monitored by flow cytometry using oxidation-sensitive fluorescent probes. The data reveal a novel mechanism for increasing glutathione levels through stimulation of the pentose phosphate pathway and identify dehydroascorbate as an antioxidant for cells susceptible to the pro-oxidant and proapoptotic properties of vitamin C.  相似文献   

12.
13.
Davies KJ 《IUBMB life》1999,48(1):41-47
Proliferating mammalian cells exhibit a broad spectrum of responses to oxidative stress, depending on the stress level encountered. Very low levels of hydrogen peroxide, e.g., 3 to 15 microM, or 0.1 to 0.5 micromol/10(7) cells, cause a significant mitogenic response, 25% to 45 % growth stimulation. Greater concentrations of H2O2, 120 to 150 microM, or 2 to 5 micromol/10(7) cells, cause a temporary growth arrest that appears to protect cells from excess energy use and DNA damage. After 4-6 h of temporary growth arrest, many cells will exhibit up to a 40-fold transient adaptive response in which genes for oxidant protection and damage repair are preferentially expressed. After 18 h of H2O2 adaptation (including the 4-6 h of temporary growth arrest) cells exhibit maximal protection against oxidative stress. The H2O2 originally added is metabolized within 30-40 min, and if no more is added the cells will gradually de-adapt, so that by 36 h after the initial H2O2 stimulus they have returned to their original level of H2O2 sensitivity. At H2O2 concentrations of 250 to 400 microM, or 9 to 14 micromol/10(7) cells, mammalian fibroblasts are not able to adapt but instead enter a permanently growth-arrested state in which they appear to perform most normal cell functions but never divide again. This state of permanent growth arrest has often been confused with cell death in toxicity studies relying solely on cell proliferation assays as measures of viability. If the oxidative stress level is further increased to 0.5 to 1.0 mM H2O2, or 15 to 30 micromol/10(7) cells, apoptosis results. This oxidative stress-induced apoptosis involves nuclear condensation, loss of mitochondrial transmembrane potential, degradation/down-regulation of mitochondrial mRNAs and rRNAs, and degradation/laddering of both nuclear and mitochondrial DNA. At very high H2O2 concentrations of 5.0 to 10.0 mM, or 150 to 300 micromol/10(7) cells and above, cell membranes disintegrate, proteins and nucleic acids denature, and necrosis swiftly follows. Cultured cells grown in 20% oxygen are essentially preadapted or preselected to survive under conditions of oxidative stress. If cells are instead grown in 3% oxygen, much closer to physiological cellular levels, they are more sensitive to an oxidative challenge but exhibit far less accumulated oxidant damage. This broad spectrum of cellular responses to oxidant stress, depending on the amount of oxidant applied and the concentration of oxygen in the cell culture system, provides for a new paradigm of cellular oxidative stress responses.  相似文献   

14.
Thioredoxin-1 (Trx-1) is a small redox oncoprotein whose expression is increased in a number of human primary cancers where it is associated with aggressive tumor growth, inhibition of apoptosis and decreased patient survival. We report that Trx-1-transfected MCF-7 human breast cancer cells have increased expression of thioredoxin peroxidase-1 (TrxP-1) a peroxiredoxin family member that scavenges H(2)O(2) using Trx-1 as a source of reducing equivalents. Our work shows that TrxP-1 is more effective than selenium-dependent glutathione peroxidase in protecting cells against H(2)O(2) damage. Transfection of mouse WEHI7.2 lymphoma cells with human TrxP-1 or TrxP-2, but not TrxP-4, protects the cells against H(2)O(2) induced apoptosis but does not protect against apoptosis induced by dexamethasone, etoposide, or doxorubicin. The results show that an increase in TrxP-1 expression contributes to the protection against H(2)O(2) induced apoptosis caused by Trx-1, but does not protect against apoptosis induced by other agents.  相似文献   

15.
Hydrogen peroxide (H2O2)-resistant variants of the Chinese hamster ovary HA-1 line have been derived by culturing cells in progressively higher concentrations of H2O2 (greater than 200 days, in 50-800 microM H2O2). The H2O2-resistant phenotype has been stable for over 60 passages (240 days) following removal from the H2O2 stress. The resistant cells demonstrate both increased capacity to deplete exogenously added H2O2 from the growth medium and increased catalase activity. H2O2 resistance correlates well with catalase activity. An increase in chromosome number occurred in the cells adapted to 200-800 microM H2O2, but increases in aneuploidy and tetraploidy were not necessary for resistance. These results suggest that adaptation to chronic oxidative stress mediated by H2O2 in mammalian cells is accompanied by a stable heritable change in expression of catalase activity.  相似文献   

16.
To analyze the effects of high concentrations of zinc ions on oxidative stress protection, we developed an original model of zinc-resistant HeLa cells (HZR), by using a 200 microM zinc sulfate-supplemented medium. Resistant cells specifically accumulate high zinc levels in intracellular vesicles. These resistant cells also exhibit high expression of metallothioneins (MT), mainly located in the cytoplasm. Exposure of HZR to Zn-depleted medium for 3 or 7 d decreases the intracellular zinc content, but only slightly reduces MT levels of resistant cells. No changes of the intracellular redox status were detected, but zinc resistance enhanced H2O2-mediated cytotoxicity. Conversely, zinc-depleted resistant cells were protected against H2O2-induced cell death. Basal- and oxidant-induced DNA damage was increased in zinc resistant cells. Moreover, measurement of DNA damage on zinc-depleted resistant cells suggests that cytoplasmic metal-free MT ensures an efficient protection against oxidative DNA damage, while Zn-MT does not. This newly developed Zn-resistant HeLa model demonstrates that high intracellular concentrations of zinc enhance oxidative DNA damage and subsequent cell death. Effective protection against oxidative damage is provided by metallothionein under nonsaturating zinc conditions. Thus, induction of MT by zinc may mediate the main cellular protective effect of zinc against oxidative injury.  相似文献   

17.
The aims of this study were; (i) to elucidate the mechanisms involved in determining cell type-specific responses to oxidative stress and (ii) to test the hypothesis that cell types which are subjected to high oxidative burdens in vivo, have greater oxidative stress resistance. Cultures of the retinal pigment epithelium (RPE), corneal fibroblasts, alveolar type II epithelium and skin epidermal cells were studied. Cellular sensitivity to H2O2 was determined by the MTT assay. Cellular antioxidant status (CuZnSOD, MnSOD, GPX, CAT) was analyzed with enzymatic assays and the susceptibility and repair capacities of nuclear and mitochondrial genomes were assessed by QPCR. Cell type-specific responses to H2O2 were observed. The RPE had the greatest resistance to oxidative stress (P>0.05; compared to all other cell types) followed by the corneal fibroblasts (P < 0.05; compared to skin and lung cells). The oxidative tolerance of the RPE coincided with greater CuZnSOD, GPX and CAT enzymatic activity (P < 0.05; compared to other cells). The RPE and corneal fibroblasts both had up-regulated nDNA repair post-treatment (P < 0.05; compared to all other cells). In summary, variations in the synergistic interplay between enzymatic antioxidants and nDNA repair have important roles in influencing cell type-specific vulnerability to oxidative stress. Furthermore, cells located in highly oxidizing microenvironments appear to have more efficient oxidative defence and repair mechanisms.  相似文献   

18.
Studies of oxidative stress have classically been performed by analyzing specific, single antioxidants. In this study, susceptibility to oxidative stress in the human keratinocyte cell line NCTC2544 exposed to hydrogen peroxide (H2O2) was measured by the TOSC (total oxyradical scavenging capacity) assay, which discriminates between the antioxidant capacity toward peroxyl radicals and hydroxyl radical. The generation of H2O2-induced DNA damage, total antioxidant capacity and levels of antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase, glutathione peroxidase) were studied. Exposure to H2O2-induced DNA damage that was gradually restored while a significant reduction in cellular TOSC values was obtained independently of stressor concentrations and the degree of DNA repair. Whereas TOSC values and cell resistance to H2O2 showed a good relationship, the extent of DNA damage is independent from cellular total antioxidant capacity. Indeed, maximum DNA damage and cell mortality were observed in the first 4 h, whereas TOSC remained persistently low until 48 h. Catalase levels were significantly lower in exposed cells after 24 and 48 h. Keratinocytes exposed after 48 h to a second H2O2 treatment exhibited massive cell death. A possible linkage was observed between TOSC values and NCTC2544 resistance to H2O2 challenge. The TOSC assay appears to be a useful tool for evaluating cellular resistance to oxidative stress.  相似文献   

19.
We have studied the effects of different concentrations of H(2)O(2) on the proliferation of PC-3 prostate carcinoma cells. Since this cell line lacks functional p53, we sought to characterize whether apoptotic response to the oxidative insult was altered such that, unlike in cells containing functional p53 apoptosis may be reduced and replaced by other mechanisms of cellular arrest and death. We did not observe necrosis in PC-3 cells treated with H(2)O(2) concentrations of up to 500 microM. In the presence of 50 microM H(2)O(2), arrest was observed in the G2-phase of the cell cycle, along with p53-independent apoptosis. In the presence of 500 microM H(2)O(2), addition of l-buthionine sulfoximine increased the percentage of apoptotic cell death. Senescence-associated cell arrest was never observed. Moreover, some of the treated cells seemed to be resistant to oxidative damage. These cells re-entered the cell cycle and proliferated normally. Analysis of the expression of p21(waf1) and of p21 protein levels, as well as the activity of caspase-3 and caspase-8, allowed us to characterize some aspects of the arrest of PC-3 cells in G2 and the apoptotic response to oxidative stress in the absence of functional p53.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号