首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. The neuromuscular system of the cockroach containsmotor neurons and muscles that can be identified in all individualinsects When the axons of these motor neurons are damaged theyregenerate and eventually reform synapses only with the originaltarget muscles However at early times after axotomy transientinappropriate functional connections are made between regeneratingneurons and muscles that theynever normally innervate Laterthe inappropriate synapses are inactivated, the inappropriateaxon branches eliminated and the original innervation patternreformed A cellcell recognition between identified motor neuronsand muscles is required to explain these observations, particularlyin light of experiments demonstrating the absence of competitionbetween appropriate and inappropriate axon terminals withinthe muscle. A minimum biochemical requirement of such a cell-cell recognitionis the existence of molecules whose presence in muscles correlateswith the innervation by identified motor neurons Using fluoresceinlabelled plant lectins to detect muscle surface glycoproteinssuch molecules have been identified In addition, there shouldbe molecular differences among the surfaces of the axon terminalsof the various identified motor neurons Hybrid oma techniqueshave enabled us to obtain monoclonal antibodies that bind tosurfaces of axon terminals of some motor neurons and not othersThese lectin receptors and antigens are good candidate recognitionmacromolecules Other molecules essential for axonal regenerationhave been identified by their presence in embryonic and adultregenerating neurons and their absence from intact adult neurons.  相似文献   

2.
The evolutionary origin of novelties is a central problem in biology. At a cellular level this requires, for example, molecularly resolving how brainstem motor neurons change their innervation target from muscle fibers (branchial motor neurons) to neural crest-derived ganglia (visceral motor neurons) or ear-derived hair cells (inner ear and lateral line efferent neurons). Transplantation of various tissues into the path of motor neuron axons could determine the ability of any motor neuron to innervate a novel target. Several tissues that receive direct, indirect, or no motor innervation were transplanted into the path of different motor neuron populations in Xenopus laevis embryos. Ears, somites, hearts, and lungs were transplanted to the orbit, replacing the eye. Jaw and eye muscle were transplanted to the trunk, replacing a somite. Applications of lipophilic dyes and immunohistochemistry to reveal motor neuron axon terminals were used. The ear, but not somite-derived muscle, heart, or liver, received motor neuron axons via the oculomotor or trochlear nerves. Somite-derived muscle tissue was innervated, likely by the hypoglossal nerve, when replacing the ear. In contrast to our previous report on ear innervation by spinal motor neurons, none of the tissues (eye or jaw muscle) was innervated when transplanted to the trunk. Taken together, these results suggest that there is some plasticity inherent to motor innervation, but not every motor neuron can become an efferent to any target that normally receives motor input. The only tissue among our samples that can be innervated by all motor neurons tested is the ear. We suggest some possible, testable molecular suggestions for this apparent uniqueness.  相似文献   

3.
The cell-cell interactions leading to the formation of synaptic connections among cells in the nervous system may be mediated by cell surface macromolecules. In the cockroach the specific reformation of the original innervation pattern of a set of leg muscles during axonal regeneration indicates a significant contribution from cell-cell recognition. Macromolecules mediating such a process would be expected to be distributed differentially among the axon terminals of the various motor neurons. Monoclonal antibodies have been isolated that selectively bind to the surfaces of axon terminals of some motor neurons and not others. Preliminary biochemical characterization indicates that these antigens are glycoproteins and are good candidates for consideration as recognition macromolecules.  相似文献   

4.
The cell–cell interactions leading to the formation of synaptic connections among cells in the nervous system may be mediated by cell surface macromolecules. In the cockroach the specific reformation of the original innervation pattern of a set of leg muscles during axonal regeneration indicates a significant contribution from cell–cell recognition. Macromolecules mediating such a process would be expected to be distributed differentially among the axon terminals of the various motor neurons. Monoclonal antibodies have been isolated that selectively bind to the surfaces of axon terminals of some motor neurons and not others. Preliminary biochemical characterization indicates that these antigens are glycoproteins and are good candidates for consideration as recognition macromolecules.  相似文献   

5.
Spinal cord motor neurons control voluntary movement by relaying messages that arrive from upper brain centres to the innervated muscles. Despite the importance of motor neurons in human health and disease, the precise control of their membrane dynamics and its effect on motor neuron homoeostasis and survival are poorly understood. In particular, the molecular basis of the co-ordination of specific endocytic events with the axonal retrograde transport pathway is largely unknown. To study these important vesicular trafficking events, we pioneered the use of atoxic fragments of tetanus and botulinum neurotoxins to follow endocytosis and retrograde axonal transport in motor neurons. These neurotoxins bind specifically to pre-synaptic nerve terminals, where they are internalized. Whereas botulinum neurotoxins remain at the neuromuscular junction, tetanus toxin is retrogradely transported along the axon to the cell body, where it is released into the intersynaptic space and is internalized by adjacent inhibitory interneurons. The high neurospecificity and the differential intracellular sorting make tetanus and botulinum neurotoxins ideal tools to study neuronal physiology. In the present review, we discuss recent developments in our understanding of the internalization and trafficking of these molecules in spinal cord motor neurons. Furthermore, we describe the development of a reliable transfection method for motor neurons based on microinjection, which will be extremely useful for dissecting further the molecular basis of membrane dynamics and axonal transport in these cells.  相似文献   

6.
7.
Crustacean muscles are innervated by phasic and tonic motor neurons that display differential physiology and have morphologically distinct synaptic terminals. Phasic motor neurons release much more transmitter per impulse and have filiform terminals, whereas tonic motor neurons release less transmitter and have larger terminals with prominent varicosities. Using an antibody raised against Drosophila frequenin (frq), a calcium-binding protein that enhances transmitter release in Drosophila synaptic terminals, we found that frq-like immunoreactivity is prominent in many of the phasic, but not tonic nerve endings of crayfish motor neurons. In contrast, synapsin- and dynamin-like immunoreactivities are strongly expressed in both types of terminal. The immunocytochemical findings strongly suggested the presence of an frq-like molecule in crayfish, and its differential expression indicated a possible modulatory role in transmitter release. Therefore, we cloned the cDNA sequences for the crayfish and lobster homologues of Drosophila frq. Crustacean frequenins are very similar in sequence to their Drosophila counterpart, and calcium-binding regions (EF hands) are conserved. The widespread occurrence of frq-like molecules and their differential localization in crayfish motor neurons indicate a significant role in physiology or development of these neurons.  相似文献   

8.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

9.
The retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase extracellularly injected into a leg muscle was used to identify the regenerating cockroach motor neurons that have grown an axonal branch into that muscle. At least 66% of the animals with crushed nerve roots eventually reform the original innervation pattern of this muscle with no mistakes. In spite of this apparent specificity the cockroach neuromuscular system can express plasticity as evidenced by the correction of mistakes made at early stages of regeneration. These mistakes are corrected through elimination during the time interval between 40 and 60 days after nerve crush. In addition, when the distal segments of the leg are removed, thus depriving some motor neurons of their normal target muscles, many of them form stable inappropriate axonal branches in denervated as well as fully innervated muscles. These observations are discussed in terms of possible mechanisms responsible for the specificity of the cellular interactions and in terms of their relevance to understanding the development of vertebrate neuromuscular systems.  相似文献   

10.
Previous studies suggest that sensory axon outgrowth is guided by motoneurons, which are specified to innervate particular target muscles. Here we present evidence that questions this conclusion. We have used a new approach to assess the pathfinding abilities of bona fide sensory neurons, first by eliminating motoneurons after neural crest cells have coalesced into dorsal root ganglia (DRG) and second by challenging sensory neurons to innervate muscles in a novel environment created by shifting a limb bud rostrally. The resulting sensory innervation patterns mapped with the lipophilic dyes DiI and DiA showed that sensory axons projected robustly to muscles in the absence of motoneurons, if motoneurons were eliminated after DRG formation. Moreover, sensory neurons projected appropriately to their usual target muscles under these conditions. In contrast, following limb shifts, muscle sensory innervation was often derived from inappropriate segments. In this novel environment, sensory neurons tended to make more "mistakes" than motoneurons. Whereas motoneurons tended to innervate their embryologically correct muscles, sensory innervation was more widespread and was generally from more rostral segments than normal. Similar results were obtained when motoneurons were eliminated in embryos with limb shifts. These findings show that sensory neurons are capable of navigating through their usual terrain without guidance from motor axons. However, unlike motor axons, sensory axons do not appear to actively seek out appropriate target muscles when confronted with a novel terrain. These findings suggest that sensory neuron identity with regard to pathway and target choice may be unspecified or quite plastic at the time of initial axon outgrowth.  相似文献   

11.
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.  相似文献   

12.
The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning) competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.  相似文献   

13.
The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA), suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO) to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.  相似文献   

14.
An Attempt to Account for the Diversity of Crustacean Muscles   总被引:1,自引:1,他引:0  
Crustacean muscles are known to contain muscle fibers of variableproperties and to be innervated by phasic and/or tonic motoneuronswhich may possess synapses of diverse physiological properties.Frequently, phasic motor axons innervate short-sarcomere phasicmuscle fibers and tonic motor axons innervate long-sarcomeretonic muscle fibers, but some muscles receiving a single (tonic)motor axon contain both phasic and tonic muscle fibers. Althoughit is not known whether neural trophic influences are involvedin muscle differentiation, some neural trophic effects havebeen found in crustaceans, and it is reasonable to assume thatsuch influences may be involved in establishing the definitiveproperties of the muscle. Several other postulates must be made:(1) Phasic and tonic motor axons differ in their trophic effectiveness:(2) muscle fibers innervated relatively early in developmentby a tonic motor axon acquire the properties of tonic musclefibers, while those innervated later become intermediate orphasic muscle fibers; (3) the developmental stage of a growingor regenerating axon terminal plays a role in determinationof synaptic properties. Studies on regenerating limb buds supportthe hypothesis, which can account for the genesis of all observedtypes of crustacean neuromuscular system. Further experimentalwork is necessary to test the hypothesis.  相似文献   

15.
The vertebrate skeletal neuromuscular junction is the site at which motor neurons communicate with their target muscle fibers. At this synapse, as at synapses throughout the nervous system, efficient and appropriate communication requires the formation and precise alignment of specializations for transmitter release in the axon terminal with those for transmitter detection in the postsynaptic cell. Classical developmental studies demonstrate that synapse formation at the neuromuscular junction is a mutually inductive event; neurons induce postsynaptic differentiation in muscle cells and myofibers induce presynaptic differentiation in motor axon terminals. More recent experiments indicate that Schwann cells, which cap axon terminals, also play an active role in the formation and maintenance of the neuromuscular junction. Here, we review recent advances in the identification of molecules mediating such inductive interactions and the mechanisms by which they produce their effects. Although our discussion concerns events at developing neuromuscular junctions, it seems likely that similar molecules and mechanisms may act at neuron–neuron synapses in the peripheral as well as the central nervous system. BioEssays 20 :819–829, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss and muscle wasting. In muscles of ALS patients, Nogo-A-a protein known to inhibit axon regeneration-is ectopically expressed at levels that correlate with the severity of the clinical symptoms. We now show that the genetic ablation of Nogo-A extends survival and reduces muscle denervation in a mouse model of ALS. In turn, overexpression of Nogo-A in wild-type muscle fibres leads to shrinkage of the postsynapse and retraction of the presynaptic motor ending. This suggests that the expression of Nogo-A occurring early in ALS skeletal muscle could cause repulsion and destabilization of the motor nerve terminals, and subsequent dying back of the axons and motor neurons.  相似文献   

17.
The adult nervous system is characterized by partial or complete morphological segregation of terminals from different afferent neurons innervating the same postsynaptic target. This segregation is thought to result, in part, from competition between the afferent terminals. To explore the role of the target cell in the spatial distribution of presynaptic inputs, the sensory neurons of Aplysia were cultured either with or without a common target motor neuron. In the presence of a common target, the outgrowth from two different sensory neurons tends to occupy separate postsynaptic regions. When cultured without a target motor neuron, processes from different sensory neurons do not segregate, but rather grow freely along one another. Thus, morphological segregation of sensory outgrowth requires interaction with a target neuron and may reflect competition between presynaptic terminals for a limited number of synaptic sites on the motor neuron, or for a postsynaptic trophic factor.  相似文献   

18.
Crustacean muscles are innervated by phasic and tonic motor neurons that display differential physiology and have morphologically distinct synaptic terminals. Phasic motor neurons release much more transmitter per impulse and have filiform terminals, whereas tonic motor neurons release less transmitter and have larger terminals with prominent varicosities. Using an antibody raised against Drosophila frequenin (frq), a calcium‐binding protein that enhances transmitter release in Drosophila synaptic terminals, we found that frq‐like immunoreactivity is prominent in many of the phasic, but not tonic nerve endings of crayfish motor neurons. In contrast, synapsin‐ and dynamin‐like immunoreactivities are strongly expressed in both types of terminal. The immunocytochemical findings strongly suggested the presence of an frq‐like molecule in crayfish, and its differential expression indicated a possible modulatory role in transmitter release. Therefore, we cloned the cDNA sequences for the crayfish and lobster homologues of Drosophila frq. Crustacean frequenins are very similar in sequence to their Drosophila counterpart, and calcium‐binding regions (EF hands) are conserved. The widespread occurrence of frq‐like molecules and their differential localization in crayfish motor neurons indicate a significant role in physiology or development of these neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 165–175, 1999  相似文献   

19.
Despite decades of work on the neuromuscular physiology of crustacean leg muscles, little is known about how physiological differences between these muscles relate to their behavioral usage. We studied a sideways walking shore crab, Carcinus maenas, and a forward walking spider crab, Libinia emarginata, as part of our work to understand the neural control of locomotion. The two species differed significantly in facilitation at neuromuscular junctions for every muscle studied. Further, these differences are correlated exactly with the walking use of the muscles. The forward walking spider crab showed more facilitation in muscles which operate joints having larger ranges of motion in forward walking. Likewise, greater facilitation was seen in muscles more active during sideways walking in the predominantly sideways walking shore crab. These differences even occur between muscles innervated by the same motor neuron, and become more evident with higher stimulus frequency. The increased presynaptic facilitation might allow selective recruitment of fibers innervated by the same motor neuron and aid in temporal filtering. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary The highly mobile cyclopic compound eye of Daphnia magna is rotated by six muscles arranged as three bilateral pairs. The three muscles on each side of the head share a common origin on the carapace and insert dorsally, laterally and ventrally on the eye. The dorsal and ventral muscles are each composed of two muscle fibers and the lateral muscle is composed of from two to five fibers, with three the most common number. Individual muscle fibers are spindle-shaped mononucleated cells with organized bundles of myofilaments. Lateral eye-muscle fibers are thinner than those of the other muscles but are otherwise similar in ultrastructure. Two motor neurons innervate each dorsal and each ventral muscle and one motor neuron innervates each lateral muscle. The cell bodies of the motor neurons are situated dorsally in the supraesophageal ganglion (SEG) and are ipsilateral to the muscles they innervate. The dendritic fields of the dorsal-muscle motor neurons are ipsilateral to their cell bodies; those of the ventral-muscle motor neurons are bilateral though predominantly contralateral. The central projections of the lateral-muscle motor neurons are unknown. In the dorsal and ventral muscles one motor axon synapses principally with one muscle fiber; in each lateral muscle the single motor axon branches to, and forms synapses with, all the fibers. The neuromuscular junctions, characterized by pre- and postsynaptic densities and clear vesicles, are similar in all the eye muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号