首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutagenesis followed by suicide with highly radioactive tritiated arachidonic acid has been used to select for mouse fibrosarcoma (HSDM1C1) cells defective in eicosanoid precursor uptake. Survivors of the selection were screened by replica plating and autoradiographic assay of [3H]arachidonate esterification; a mutant cell line, EPU-1, was established. EPU-1 cells contain one-third as much arachidonate as normal HSDM1C1 cells. The mutant lacks arachidonate-specific acyl-CoA synthetase, which accounts for decreased arachidonate uptake. EPU-1 exhibits enhanced turnover of arachidonoyl- but not linoleoyl-phosphatidylcholine. Bradykinin-induced arachidonate release and prostaglandin E2 synthesis are decreased in EPU-1. Thus, arachidonoyl-CoA synthetase is required for arachidonate homeostasis in HSDM1C1 cells.  相似文献   

2.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

3.
We have examined the preferential incorporation of specific fatty acids into phospholipid classes of cultured human umbilical vein endothelial cells. Pulse-labeling of human umbilical vein endothelial cell phospholipids with radiolabeled fatty acids and inhibition of radiolabeled fatty acid incorporation by competition with excess, unlabeled fatty acids in pair-wise combinations revealed two distinct classes of esterification systems into human umbilical vein endothelial cell phospholipids. The eicosanoid precursor fatty acids, including arachidonate, 8,11,14-eicosatrienoate (ETA) and 5,8,11,14,17-eicosapentaenoate (EPA), exhibited high affinity incorporation into total phospholipids, whereas other fatty acids, including docosahexaenoate and monohydroxy eicosatetraenoates, showed low affinity incorporation. The relative degree of incorporation of eicosanoid precursor fatty acids into phospholipid classes was phosphatidylcholine (PC) greater than phosphatidylethanolamine (PE) greater than phosphatidylinositol (PI) greater than phosphatidylserine (PS). The specific activity of [14C]arachidonic acid-labeled PI was two times higher than that of any other radiolabeled phospholipids. When competitive incorporation of eicosanoid precursor fatty acids into phospholipid classes was studied, they were found to be acylated into different phospholipid classes at different rates. Although eicosanoid precursor fatty acids were not preferentially incorporated into PC, arachidonic acid was preferentially incorporated into the other phospholipids and exhibited particular selectivity in comparison with the other eicosanoid precursor fatty acids for incorporation into PI. These results demonstrate that human umbilical vein endothelial cells possess selective incorporation mechanisms for specific fatty acids into various phospholipids via the deacylation-reacylation pathway.  相似文献   

4.
Rat peritoneal mast cells respond to various types of secretagogues, such as antigen (receptor-mediated), A23187 (calcium mobilizing), and compound 48/80 (membrane perturbing), and release arachidonic acid from membrane phospholipids prelabeled with [3H]arachidonate. The rate of arachidonic acid liberation varied from one stimulant to the other. Ionophore A23187 (0.1 micrograms/ml) appeared to be most potent in releasing arachidonate among the three stimulants at which doses each secretagogue caused almost equivalent histamine secretion. However, upon stimulation with these three secretagogues, the radioactivity of phosphatidylcholine (PC) was markedly reduced with a concomitant increase of arachidonate radioactivity. Hydrolysis of PC by phospholipase A2 is likely to be the major route of arachidonic acid liberation in either IgE-mediated or non-IgE activation in mast cells.  相似文献   

5.
This study has quantitated changes in the content of labeled and unlabeled arachidonate of neutrophil phosphoglyceride classes and subclasses during cell activation with ionophore A23187. The predominant pools of endogenous arachidonate in the resting neutrophil were found in ethanolamine (68%)-, choline (19%)-, and inositol (12.0%)-containing glycerolipids. Upon stimulation, endogenous arachidonate was lost from primarily ethanolamine (PE) greater than choline (PC) greater than inositol (PI)-linked phosphoglycerides. Released leukotriene B4 and 20-hydroxyleukotriene B4 accounted for 10-35% of the total arachidonate lost from all phosphoglyceride classes. In contrast to the mass loss, ionophore induced a decrease of labeled arachidonate from primarily PC and PI. In the resting neutrophil, 66% of the total arachidonate in PC was found in the 1-alkyl-linked fraction. Furthermore, loss of endogenous arachidonate from 1-alkyl-2-arachidonoyl sn-glycero-3-phosphocholine accounted for 62% of the decrease of arachidonate from choline-linked phosphoglycerides. In contrast, 60% of the release of labeled arachidonate from PC subclasses originated from 1-acyl molecular species. 1-Alk-1'-enyl-2-acyl-sn-glycero-3-PE contained 71% of the arachidonate in ethanolamine-linked phosphoglycerides and was the major PE subclass which was degraded during neutrophil activation with ionophore A23187. These findings demonstrate that human neutrophils contain large ether-linked stores of arachidonate and the capacity to mobilize these stores. In addition, this study points out major discrepancies between using mass or label to determine sources of arachidonate for eicosanoids.  相似文献   

6.
Macrophages are an important source of the lipid mediators, arachidonic acid metabolites and platelet-activating factor (PAF), produced during inflammation. Studies were undertaken to identify the phospholipid substrates that can serve as a source of arachidonic acid in human monocyte-derived macrophages exposed to the inflammatory stimuli bacterial lipopolysaccharide (LPS) and opsonized zymosan (OpZ). Since PAF is derived from 1-alkyl-2-acyl-glycerophosphocholine, it was of interest to determine if this phospholipid precursor could also serve as a source of arachidonic acid. The day-5 macrophages incorporated 38% of the available [3H]arachidonic acid into lipid by 4 h, 54% of which was in phospholipid [phosphatidylcholine (PC) greater than phosphatidylethanolamine (PE) greater than phosphatidylinositol (PI)]. The proportion of label incorporated into ether-linked PC and PE increased with time. After prelabelling with [3H]arachidonic acid, the effect of stimuli on the redistribution of label within phospholipids was followed. Without stimulus there was a loss of label from PC, PI and phosphatidic acid by 3 h, but an increase of label in PE. The [3H]arachidonic acid that was lost from PC in the absence of stimulus was derived solely from the 1-acyl-linked species of PC, whereas an increase in label occurred in the 1-alkyl-linked species of PC. By contrast, LPS stimulation resulted in a preferential, dose-dependent loss of label from PC and PI, which was maximal between 1 and 3 h after adding the LPS. In addition, LPS induced a 35% decrease in the molar quantity of PI in the macrophages but had no effect on the quantity of PC, PE or phosphatidylserine. Stimulation with OpZ also resulted in a loss of label, mainly from PC and PI. Of the total label lost from PC in response to LPS or OpZ, approx. 50% was derived from the 1-alkyl-linked species. The results suggest that phospholipase C- and phospholipase A2-mediated mechanisms for arachidonic acid release are activated in human macrophages exposed to the inflammatory stimuli LPS and OpZ. In addition, 1-alkyl-linked PC can serve as a source of arachidonic acid and as a precursor for PAF production in the stimulated macrophages.  相似文献   

7.
Membrane phospholipid turnover was investigated during histamine release from rat mast cells. Addition of calcium ionophore A23187 (0.5 microgram/ml) to mast cells prelabeled with [3H]glycerol induced the rapid and progressive increase in phosphatidic acid (PA) and 1,2-diacylglycerol (DG), which was concomitant with the small rise in phosphatidylinositol (PI). Loss of the level in triacylglycerol (TG) was very marked. Polyamine compound 48/80 (5 micrograms/ml) was shown to cause rises in PA, 1,2-DG, and PI without any significant changes in TG. Both stimuli increased incorporation of exogenous [3H]glycerol into phospholipids, indicating the involvement of de novo synthesis in phospholipid metabolism. Studies with [3H]arachidonic acid-labeled mast cells showed an enhanced liberation of radioactive arachidonate and metabolites upon histamine release. There were associated decreases of radioactivity in phosphatidylcholine (PC) and TG when exposed to A23187, while phosphatidylethanolamine (PE) was degraded as a result of 48/80 activation. The transient increases of [3H]arachidonoyl-1,2-DG and PA were caused by 48/80, while A23187 showed a gradual rise in the radioactivity in these two lipid fractions. These findings reflect activation of phospholipase C. When mast cells were activated by low concentrations of A23187 (0.1 microgram/ml) and 48/80 (0.5 microgram/ml), different behaviors of PI metabolism were observed. An early degradation of PI and a subsequent formation of 1,2-DG and PA suggest that the lower concentrations of these agents stimulate the PI cycle initiated by PI breakdown rather than de novo synthesis. These results demonstrate that marked and selective changes in membrane phospholipid metabolism occur during histamine release from mast cells, and that these reactions seem to be controlled by the coordination of degradation and biosynthesis, depending on the type and the concentration of stimulants. A23187 stimulates arachidonate release perhaps via the cleavages of PC and TG, whereas 48/80 liberates arachidonate from PE.  相似文献   

8.
Initial incorporation and subsequent remodeling of 16 phosphoglyceride molecular species containing arachidonate in the human neutrophil have been studied. Neutrophils were pulse-labeled with [3H]arachidonic acid (AA) for 5 min, then phospholipids were analyzed either at this time point or after a subsequent 120-min incubation. [3H]AA was found to be incorporated into phosphoglycerides phosphatidylinositol (PI) greater than phosphatidylcholine (PC) greater than phosphatidylethanolamine (PE) by 5 min. Incorporation of [3H]AA was not related to pool size, but reflected an increase in phosphoglyceride turnover. Following the 120-min incubation, only PE gained a significant amount of labeled arachidonate. Specific activity analysis revealed that PI contained the highest labeled/unlabeled ratio at both 5 min and 120 min. After the initial 5-min pulse, the majority of [3H]arachidonate was incorporated into 1-acyl-2-[3H]arachidonoyl-sn-glycero-3-PC, -PE, and -PI showing no preference for fatty acyl chains at the sn-1 position. However, [3H]AA was remodeled into 1-alkyl-acyl-and 1-alk-1-enyl-acyl-sn-glycero-3-PC and -PE molecular species in those neutrophils incubated for the additional 120 min. Specific activities of [3H]AA within all diacyl molecular species were initially higher relative to those alkyl-acyl and alk-1-enyl-acyl molecular species, but for PC and PE became more uniform as label shifted into ether and plasmalogen pools during the additional 120-min incubation. In contrast, the specific activity of 1-stearoyl-2-arachidonoyl-sn-glycero-3-PI remained constant throughout the 120-min incubation.  相似文献   

9.
Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization from decidua-cell phospholipid by a mechanism involving phospholipase A-mediated PI hydrolysis and phospholipase C-mediated PC hydrolysis, coupled with further hydrolysis of the 1,2-diacylglycerol product.  相似文献   

10.
A high level of arachidonic acid release from [2-14C]arachidonylphosphatidylinositol (PI) was observed at neutral pH (6.0-7.0) in the presence of purified plasma membranes of guinea pig peritoneal macrophages. This activity was at least 10-fold higher than that with arachidonylphosphatidylcholine (PC) or phosphatidylethanolamine (PE) as substrate. The accumulation of [14C]diacylglycerol and [14C]phosphatidic acid was not detected at any time, and arachidonic acid release from [14C]arachidonyldiacylglycerol was not detectable either. The data suggest that arachidonic acid release from PI may not occur via the phospholipase C pathway. In this paper, we demonstrate the possibility that arachidonic acid release from PI at neutral pH in the macrophage plasma membrane is dependent on the action of phospholipase A2 (EC 3.1.1.4) -like activity. The maximum arachidonic acid release was dependent upon both pH and substrate. Particularly, the activity of arachidonic acid release from PI at neutral pH was very high compared with that from PC or PE. We suggest that phosphatidylinositol phospholipase A2 (EC 3.1.1.52) may play an important role in providing arachidonic acid for subsequent metabolic activity in the macrophages.  相似文献   

11.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

12.
Glycerophospholipid biosynthesis by the de novo pathway was assessed in mouse peritoneal macrophages by pulse-labeling with [U-14C]glycerol. Phosphatidylcholine (PC), which amounts to about 35% of total cellular phospholipids, exhibited the highest rate of glycerol uptake, followed by phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Remodeling of PC molecular species by deacylation/reacylation was established by determining the redistribution of glycerol label over 2 h after a 1 h pulse of [U-14C]glycerol and by determining incorporation of 18O from H2 18O-containing media. These data suggest that stearic and arachidonic acid enter PC primarily by the remodeling pathway but that small amounts of highly unsaturated molecular species, including 1,2-diarachidonoyl PC, are rapidly synthesized de novo, and subsequently remodeled or degraded. Treatment of the cells with the ionophore A23187 resulted in the selective enhancement of arachidonate turnover in PC, PI and neutral lipid, as well as enhanced de novo PI synthesis. [U-14C]Glycerol labeling experiments suggest that arachidonic acid liberated by Ca2+-dependent phospholipase A2 activity is also reacylated in part through de novo glycerolipid biosynthesis, leading to the formation and remodeling of 1,2-diarachidonoyl PC and other highly polyunsaturated molecular species.  相似文献   

13.
A plasma membrane fraction isolated from cerebral cortex of control and ethanol-treated rats was used to study the effects of chronic ethanol administration on uptake of arachidonate by membrane phospholipids. Upon incubation of the membranes with [14C] arachidonic acid in the presence of ATP, Mg2+, and CoA, radioactivity was incorporated into all of the phospholipids, although a large proportion of the label was found in phosphatidylinositols (PI, 60%) and phosphatidylcholines (PC, 20%). Rats given ethanol (8–10 g/kg body wt) via intubation in the form of a liquid diet for 4 weeks showed an increase (17–20%) in arachidonate incorporation into PI and PC as compared to phosphatidylethanolamines (PE) and phosphatidylserines (PS). A similar increase in uptake activity was observed at 2 or 24 h upon withdrawal of ethanol, but uptake activity returned readily to that of control level by 72 h. The method described in this study is a sensitive and reliable procedure for monitoring the arachidonoyl turnover activity in neural membranes with respect to chronic ethanol induction and withdrawal.  相似文献   

14.
The objective of the present study was to better understand the remodeling of arachidonic acid (AA) in phospholipids of the mouse bone marrow-derived mast cell (BMMC) during Ag and ionophore A23187 activation. Initial studies were designed to understand the movement of AA in phospholipid classes under resting conditions. BMMC pulse labeled with AA incorporated greater than 95% of the label into the major phospholipid classes. Phosphatidylcholine (PC) subclasses, 1-acyl-2-arachidonoyl-(sn-glycero-3-phosphocholine (GPC)) in particular, initially accounted for most of the label incorporated into the cells with phosphatidylinositol/phosphatidylserine (PI/PS) and phosphatidylethanolamine (PE) subclasses containing much smaller quantities. Prolonged incubation of labeled BMMC resulted in a decrease in the radioactivity in PC with a concomitant increase in PE such that 1-alk-1-enyl-2-arachidonoyl-(sn-glycero-3-phosphoethanolamine (GPE)) became the single largest labeled AA pool by 24 h. Further experiments indicated that 24 h was the time required to reach isotopic equilibrium among AA-containing phospholipids of the BMMC. In the next series of experiments, BMMC phospholipids were labeled to different specific activities by either labeling the cells for 0.5 h or for 24 h followed by stimulation. Under isotopic equilibrium conditions (24 h), stimulation resulted in AA release from PE greater than PC much greater than PI/PS with 1-alk-1-enyl-2-arachidonoyl-GPE providing the bulk of AA released from the BMMC. By contrast, cells labeled for 0.5 h released AA from PC much greater than PI/PS, with 1-acyl-2-arachidonoyl-GPC accounting for most of the AA released from BMMC phospholipids. Label associated with PE subclasses under nonequilibrium conditions remained unchanged or slightly increased throughout a 10-min stimulation period. Finally, BMMC were double labeled with [14C]-AA for 24 h and then with [3H]-AA for 0.5 h. Cell stimulation resulted in a decrease in the [3H]/[14C] ratio in PC and PI and an increase in the ratio in PE. The decrease in [3H]/[14C] ratio in PC was mainly in 1-acyl-2-arachidonoyl-GPC, whereas the increase in PE subclasses was primarily in 1-alk-1-enyl-2-arachidonoyl-GPE. The [3H]/[14C] ratio in cellular neutral lipids and in supernatant fluid products were at values between PC and PE subclasses. Taken together, these data suggest that during Ag activation, the release of free arachidonic acid is from predominantly PE subclasses. Concomitant with the release of AA, there is a rapid remodeling of AA from PC subclasses into PE subclasses (1-alk-1-enyl-2-acyl-GPE).  相似文献   

15.
Our recent findings indicate that glucose-induced insulin secretion from isolated pancreatic islets is temporally associated with accumulation of substantial amounts of free arachidonic acid and that arachidonate may serve as a second messenger for intracellular calcium mobilization in islets. In an effort to determine the source of this released arachidonate, the endogenous fatty acid composition of phospholipids from islets has been determined by thin-layer chromatographic separation of the phospholipids, methanolysis to the fatty acid methyl esters, and quantitative gas chromatographic analyses. The relative abundance of phospholipids in islets as judged by their fatty acid content was phosphatidylcholine (PC), 0.63; phosphatidylethanolamine (PE), 0.23; phosphatidylinositol (PI), 0.067; phosphatidylserine (PS), 0.049. Arachidonate constituted 17% of the total islet fatty acid content, and PC contained 43% of total islet arachidonate. Islets incubated with [3H]arachidonate in the presence of 28 mM D-glucose incorporated radiolabel into PC with a considerably higher specific activity than that of PE, PS or PI. The total fatty acid content of PC from islets incubated with 28 mM glucose for 30 min was significantly lower than that of islets incubated with 3 mM glucose, and smaller effects were observed with PE, PS and PI. The molar decrement in PC arachidonate was 3.2 pmol/islet under these conditions, which is sufficient to account for the previously observed accumulation of free arachidonate (2 pmol/islet). A sensitive method involving negative ion-chemical ionization-mass spectrometric analyses of the pentafluorobenzyl esters of fatty acids derived from trace amounts of lysophosphatidylcholine (lyso-PC) was developed, and glucose-stimulation was found to reduce islet lyso-PC content by about 10-fold. These findings indicate that the insulin secretagogue D-glucose induces phospholipid hydrolysis in islets and suggest that PC may be the major source of free arachidonate which accumulates in glucose-stimulated islets.  相似文献   

16.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

17.
Peritoneal macrophages from endotoxin-tolerant rats have been found to exhibit depressed metabolism of arachidonic acid (AA) to prostaglandins and thromboxane in response to endotoxin. The effect of endotoxin tolerance on AA turnover in peritoneal macrophages was investigated by measuring [14C]AA incorporation and release from membrane phospholipids. Endotoxin tolerance did not affect the amount of [14C]AA incorporated into macrophages (30 min-24 h). However, the temporal incorporation of [14C]AA into individual phospholipid pools (15 min-24 h) was altered. In endotoxin-tolerant macrophages, [14C]AA incorporation into phosphatidylcholine (PC) (2, 4, 24 h) and phosphatidylethanolamine (PE) (8 h) was increased, while the incorporation into phosphatidylserine (PS) (2-24 h) was reduced (P less than 0.005) compared to control macrophages. There was no change in [14C]AA incorporation into phosphatidylinositol (PI). Following 2 or 24 h of incorporation of [14C]AA, macrophages were incubated (3 h) with endotoxin (50 micrograms/ml) or A23187 (1 microM), and [14C]AA release was measured. Endotoxin-tolerant macrophages released decreased (P less than 0.05) amounts of [14C]AA in response to both endotoxin and the calcium ionophore A23187 compared to controls. Control macrophages in response to endotoxin released [14C]AA from PC, PI and PE. In contrast, tolerant cells released [14C]AA only from PC (P less than 0.05). A23187 released [14C]AA from all four pools in the control cells, but only from PC and PE in the tolerant cells. These data demonstrate that endotoxin tolerance alters the uptake and release of AA from specific macrophage phospholipid pools. These results suggest that changes in AA turnover and/or storage are associated with endotoxin tolerance.  相似文献   

18.
In mammalian cells, arachidonate release and paf-acether formation are frequently associated. The alkyl-acyl-GPC has been proposed as an important source for released arachidonic acid and arachidonate-containing alkylacyl-GPC species as unique precursor for paf-acether. However, the specificity of precursor pools either concerning arachidonic acid or paf-acether is still a matter of controversy. We studied the relationship between the precursor pools for both autacoids in antigenically-stimulated cultured mast cells. We took advantage of the particular arachidonate turnover rate in each phospholipid to investigate the role of alkyl-arachidonyl-GPC in the supply of arachidonic acid by using newly and previously [14C]arachidonate-labeled cells. The specific activity of the released arachidonate was reduced 2-fold following overnight cell incubation, whereas labeling in alkyl-arachidonoyl-GPC was only slightly modified and never corresponded to that of released arachidonate when newly or previously labeled cells were triggered with the antigen. These results are not in favor of a major role for alkyl-arachidonoyl-GPC in supplying arachidonate. In contrast, by using previously labeled cells, we demonstrated that all arachidonate-containing phospholipids were involved in the release of arachidonic acid. The pattern of alkyl chains in alkyl-arachidonoyl-GPC, as well as in total alkylacyl-GPC, is unique since it consists mainly of 18:1 (more than 55%), whereas the 16:0 represents only about 30% of total alkyl chains. Therefore, we analyzed paf-acether molecular composition in order to compare it to the alkyl composition of the precursor pools. The content in 18:1 species of paf-acether, as measured by bioassay (aggregation of rabbit platelets), was always lower than that of 16:0 species and then did not correspond to the alkyl composition of the precursor. These data suggest that the enzymes involved in paf synthesis might be specific for 16:0 alkyl chains of precursor pool.  相似文献   

19.
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.  相似文献   

20.
Heat shock has a profound influence on the metabolism and behavior of eukaryotic cells. We have examined the effects of heat shock on the release from cells of arachidonic acid and its bioactive eicosanoid metabolites, the prostaglandins and leukotrienes. Heat shock (42-45 degrees) increased the rate of arachidonic acid release from human, rat, murine, and hamster cells. Arachidonate accumulation appeared to be due, at least partially, to stimulation of a phospholipase A2 activity by heat shock and was accompanied by the accumulation of lysophosphatidyl-inositol and lysophosphatidylcholine in membranes. Induction of arachidonate release by heat did not appear to be mediated by an increase in cell Ca++. Stimulation of arachidonate release by heat shock in hamster fibroblasts was quantitatively similar to the receptor-mediated effects of alpha thrombin and bradykinin. The effects of heat shock and alpha thrombin on arachidonate release were inhibited by glucocorticoids. Increased arachidonate release in heat-shocked cells was accompanied by the accelerated accumulation of cyclooxygenase products prostaglandin E2 and prostaglandin F2 alpha and by 5-lipoxygenase metabolite leukotriene B4. Elevated concentrations of arachidonic acid and metabolites may be involved in the cytotoxic effects of hyperthermia, in homeostatic responses to heat shock, and in vascular and inflammatory reactions to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号