首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity.  相似文献   

2.
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.  相似文献   

3.
4.
The malaria parasite sporozoite sequentially invades mosquito salivary glands and mammalian hepatocytes; and is the Plasmodium lifecycle infective form mediating parasite transmission by the mosquito vector. The identification of several sporozoite-specific secretory proteins involved in invasion has revealed that sporozoite motility and specific recognition of target cells are crucial for transmission. It has also been demonstrated that some components of the invasion machinery are conserved between erythrocytic asexual and transmission stage parasites. The application of a sporozoite stage-specific gene knockdown system in the rodent malaria parasite, Plasmodium berghei, enables us to investigate the roles of such proteins previously intractable to study due to their essentiality for asexual intraerythrocytic stage development, the stage at which transgenic parasites are derived. Here, we focused on the rhoptry neck protein 11 (RON11) that contains multiple transmembrane domains and putative calcium-binding EF-hand domains. PbRON11 is localised to rhoptry organelles in both merozoites and sporozoites. To repress PbRON11 expression exclusively in sporozoites, we produced transgenic parasites using a promoter-swapping strategy. PbRON11-repressed sporozoites showed significant reduction in attachment and motility in vitro, and consequently failed to efficiently invade salivary glands. PbRON11 was also determined to be essential for sporozoite infection of the liver, the first step during transmission to the vertebrate host. RON11 is demonstrated to be crucial for sporozoite invasion of both target host cells – mosquito salivary glands and mammalian hepatocytes – via involvement in sporozoite motility.  相似文献   

5.
Plasmodium sporozoites, the transmission form of the malaria parasite, successively invade salivary glands in the mosquito vector and the liver in the mammalian host. Sporozoite capacity to invade host cells is mechanistically related to their ability to glide on solid substrates, both activities depending on the transmembrane protein TRAP. Here, we show that loss-of- function mutations in two adhesive modules of the TRAP ectodomain, an integrin-like A-domain and a thrombospondin type I repeat, specifically decrease sporozoite invasion of host cells but do not affect sporozoite gliding and adhesion to cells. Irrespective of the target cell, i.e. in mosquitoes, rodents and cultured human or hamster cells, sporozoites bearing mutations in one module are less invasive, while those bearing mutations in both modules are non-invasive. In Chinese hamster ovary cells, the TRAP modules interact with distinct cell receptors during sporozoite invasion, and thus act as independently active pass keys. As these modules are also present in other members of the TRAP family of proteins in Apicomplexa, they may account for the capacity of these parasites to enter many cell types of phylogenetically distant origins.  相似文献   

6.
Malaria is contracted when Plasmodium sporozoites are inoculated into the vertebrate host during the blood meal of a mosquito. In infected mosquitoes, sporozoites are present in large numbers in the secretory cavities of the salivary glands at the most distal site of the salivary system. However, how sporozoites move through the salivary system of the mosquito, both in resting and feeding mosquitoes, is unknown. Here, we observed fluorescent Plasmodium berghei sporozoites within live Anopheles stephensi mosquitoes and their salivary glands and ducts. We show that sporozoites move in the mosquito by gliding, a type of motility associated with their capacity to invade host cells. Unlike in vitro, sporozoite gliding inside salivary cavities and ducts is modulated in speed and motion pattern. Imaging of sporozoite discharge through the proboscis of salivating mosquitoes indicates that sporozoites need to locomote from cavities into ducts to be ejected and that their progression inside ducts favours their early ejection. These observations suggest that sporozoite gliding allows not only for cell invasion but also for parasite locomotion in host tissues, and that it may control parasite transmission.  相似文献   

7.
Malaria sporozoites have the unique capacity to invade two entirely different types of target cell in the mosquito vector and the vertebrate host during the course of the parasite's life cycle. Although little is known about the specific interaction of the sporozoite with its target cells, two sporozoite proteins, circumsporozoite (CS) and thrombospondin-related adhesive protein (TRAP), have been shown to play important roles in the invasion of both cell types. CS protein is a multifunctional protein involved in sporogony, invasion of the salivary glands, the specific arrest of sporozoites in the liver sinusoid, gliding motility of the sporozoite, and hepatocyte recognition and entry. TRAP has been shown to be critical for sporozoite infection of the mosquito salivary glands and liver cells, and is essential for sporozoite gliding motility. This review will focus on the involvement of these molecules in sporozoite motility and the invasion of host cells.  相似文献   

8.
Plasmodium sporozoites collected from oocysts, haemocoel and salivary glands of the mosquito show profound differences in their biological properties such as motility, ability to induce protective immune response and infectivity for vertebrate host cells. Sporozoites from salivary glands are much more infectious than those from oocysts and haemocoel. Differential expression of proteins, such as the circumsporozoite (CS) protein and the thrombospondin-related adhesive protein (TRAP), implicated in sporozoite recognition and entry into hepatocytes may account for the development of infectivity during ontogeny. We have carried out a series of experiments to: (i) analyse the expression and localization of TRAP in P.falciparum sporozoites during development in the mosquito; and (ii) elucidate the biochemical and adhesive properties of recombinant TRAP. Our data indicate that TRAP is not expressed in oocysts, whereas variable amounts of CS protein are found in this parasite developmental stage. Hemocoel sporozoites display the distinct phenotypes TRAP- CS protein+ and TRAP+ CS protein+ at a frequency of 98.5 and 1.5% respectively. Salivary gland sporozoites are all TRAP+ CS protein+. We also provide experimental evidence showing that recombinant TRAP binds to the basolateral cell membrane of hepatocytes in the Disse's space and that sulfated glycoconjugates function as TRAP ligands on human hepatocytes.  相似文献   

9.
The Journey of Malaria Sporozoites in the Mosquito Salivary Gland   总被引:11,自引:0,他引:11  
The life cycle of malaria parasites in the mosquito vector is completed when the sporozoites infect the salivary gland and are ready to be injected into the vertebrate host. This paper describes the fine structure of the invasive process of mosquito salivary glands by malaria parasites. Plasmodium gallinaceum sporozoites start the invasion process by attaching to and crossing the basal lamina and then penetrating the host plasma membrane of the salivary cells. The penetration process appears to involve the formation of membrane junctions. Once inside the host cells, the sporozoites are seen within vacuoles attached by their anterior end to the vacuolar membrane. Mitochondria surround, and are closely associated with, the invading sporozoites. After the disruption of the membrane vacuole, the parasites traverse the cytoplasm, attach to, and invade the secretory cavity through the apical plasma membrane of the cells. Inside the secretory cavity, sporozoites are seen again inside vacuoles. Upon escaping from these vacuoles, sporozoites are positioned in parallel arrays forming large bundles attached by multilammelar membrane junctions. Several sporozoites are seen around and inside the secretory duct. Except for the penetration of the chitinous salivary duct, our observations have morphologically characterized the entire process of sporozoite passage through the salivary gland.  相似文献   

10.
The circumsporozoite protein (CSP) plays a key role in malaria sporozoite infection of both mosquito salivary glands and the vertebrate host. The conserved Regions I and II have been well studied but little is known about the immunogenic central repeat region and the N-terminal region of the protein. Rodent malaria Plasmodium berghei parasites, in which the endogenous CS gene has been replaced with the avian Plasmodium gallinaceum CS (PgCS) sequence, develop normally in the A. stephensi mosquito midgut but the sporozoites are not infectious. We therefore generated P. berghei transgenic parasites carrying the PgCS gene, in which the repeat region was replaced with the homologous region of P. berghei CS (PbCS). A further line, in which both the N-terminal region and repeat region were replaced with the homologous regions of PbCS, was also generated. Introduction of the PbCS repeat region alone, into the PgCS gene, did not rescue sporozoite species-specific infectivity. However, the introduction of both the PbCS repeat region and the N-terminal region into the PgCS gene completely rescued infectivity, in both the mosquito vector and the mammalian host. Immunofluorescence experiments and western blot analysis revealed correct localization and proteolytic processing of CSP in the chimeric parasites. The results demonstrate, in vivo, that the repeat region of P. berghei CSP, alone, is unable to mediate sporozoite infectivity in either the mosquito or the mammalian host, but suggest an important role for the N-terminal region in sporozoite host cell invasion.  相似文献   

11.
12.
13.
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.  相似文献   

14.
Most Apicomplexan parasites, including the human pathogens Plasmodium, Toxoplasma, and Cryptosporidium, actively invade host cells and display gliding motility, both actions powered by parasite microfilaments. In Plasmodium sporozoites, thrombospondin-related anonymous protein (TRAP), a member of a group of Apicomplexan transmembrane proteins that have common adhesion domains, is necessary for gliding motility and infection of the vertebrate host. Here, we provide genetic evidence that TRAP is directly involved in a capping process that drives both sporozoite gliding and cell invasion. We also demonstrate that TRAP-related proteins in other Apicomplexa fulfill the same function and that their cytoplasmic tails interact with homologous partners in the respective parasite. Therefore, a mechanism of surface redistribution of TRAP-related proteins driving gliding locomotion and cell invasion is conserved among Apicomplexan parasites.  相似文献   

15.
16.
The completion of the Plasmodium (malaria) life cycle in the mosquito requires the parasite to traverse first the midgut and later the salivary gland epithelium. We have identified a putative kinase-related protein (PKRP) that is predicted to be an atypical protein kinase, which is conserved across many species of Plasmodium. The pkrp gene encodes a RNA of about 5300 nucleotides that is expressed as a 90 kDa protein in sporozoites. Targeted disruption of the pkrp gene in Plasmodium berghei, a rodent model of malaria, compromises the ability of parasites to infect different tissues within the mosquito host. Early infection of mosquito midgut is reduced by 58-71%, midgut oocyst production is reduced by 50-90% and those sporozoites that are produced are defective in their ability to invade mosquito salivary glands. Midgut sporozoites are not morphologically different from wild-type parasites by electron microscopy. Some sporozoites that emerged from oocysts were attached to the salivary glands but most were found circulating in the mosquito hemocoel. Our findings indicate that a signalling pathway involving PbPKRP regulates the level of Plasmodium infection in the mosquito midgut and salivary glands.  相似文献   

17.
Alveolins, or inner membrane complex (IMC) proteins, are components of the subpellicular network that forms a structural part of the pellicle of malaria parasites. In Plasmodium berghei, deletions of three alveolins, IMC1a, b, and h, each resulted in reduced mechanical strength and gliding velocity of ookinetes or sporozoites. Using time lapse imaging, we show here that deletion of IMC1h (PBANKA_143660) also has an impact on the directionality and motility behaviour of both ookinetes and sporozoites. Despite their marked motility defects, sporozoites lacking IMC1h were able to invade mosquito salivary glands, allowing us to investigate the role of IMC1h in colonisation of the mammalian host. We show that IMC1h is essential for sporozoites to progress through the dermis in vivo but does not play a significant role in hepatoma cell transmigration and invasion in vitro. Colocalisation of IMC1h with the residual IMC in liver stages was detected up to 30 hours after infection and parasites lacking IMC1h showed developmental defects in vitro and a delayed onset of blood stage infection in vivo. Together, these results suggest that IMC1h is involved in maintaining the cellular architecture which supports normal motility behaviour, access of the sporozoites to the blood stream, and further colonisation of the mammalian host.  相似文献   

18.
Malaria is transmitted to a mammalian host when the sporozoite stage of the Plasmodium parasite is injected by a mosquito vector. Sporozoites are unique in being able to interact with both hosts. Formed and released in the mosquito midgut, sporozoites bind to the salivary glands and invade their secretory cells. Once injected into the mammalian host, they home to the liver and invade hepatocytes. Recent work has shown that two sporozoite surface proteins, CS and TRAP, act in both hosts, perform multiple functions, and are each essential for the parasite at more than one step of its life cycle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号