共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceruloplasmin (CP) is a blue copper glycoprotein with multiple physiological functions including ferroxidase and oxidase activities. CP is also an important serum oxygen free radical (OFR) scavenger and antioxidant, exerting cardioprotective and antifibrillatory actions. Although it has been reported that CP activities can be inhibited by OFR, the intimate mechanism of this inactivation is still not clear. Exposure of bovine CP to H2O2 induced inactivation of the protein as well as structural alterations as indicated by loss of protein bands by SDS-PAGE. Both phenomena were H2O2 concentration and time dependent. HPLC gel filtration and capillary electrophoresis analysis of CP treated with H2O2 revealed an aggregation of the protein. Quantification of dityrosine formation by fluorescence indicated the involvement of dityrosine bridging, which could be responsible for aggregation of CP under oxidative attack. Oxidative damage to CP under H2O2 treatment was completely prevented by pyruvate, suggesting that the association of CP with antioxidants could extend the range of the protective action of this protein. 相似文献
2.
Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro 总被引:5,自引:0,他引:5
McLean PJ Klucken J Shin Y Hyman BT 《Biochemical and biophysical research communications》2004,321(3):665-669
Geldanamycin (GA) is a naturally occurring benzoquinone ansamycin that induces heat shock protein 70 (Hsp70). GA has been shown to reduce alpha-synuclein induced neurotoxicity in a fly model of Parkinson's disease. We have previously shown that heat shock proteins can prevent alpha-synuclein aggregation and protect against alpha-synuclein induced toxicity in human H4 neuroglioma cells. Here, we hypothesize that GA treatment will reduce alpha-synuclein aggregation and prevent alpha-synuclein induced toxicity and we show that GA can induce Hsp70 in a time- and concentration-dependent manner in H4 cells. Pretreatment with 200nM GA 24h prior to transfection prevented alpha-synuclein aggregation and protected against toxicity. Treatment of cells with pre-existing inclusions with GA did not result in a reduction in the number of cells containing inclusions, suggesting that upregulation of Hsp70 is not sufficient to remove established inclusions. Similarly, Western blot analysis demonstrated that GA treatment could dramatically reduce both total alpha-synuclein and high molecular weight alpha-synuclein aggregates. Taken together, these data suggest that GA is effective in preventing alpha-synuclein aggregation and may represent a pharmacological intervention to therapeutically increase expression of molecular chaperone proteins to treat neurodegenerative diseases where aggregation is central to the pathogenesis. 相似文献
3.
We investigated the fragmentation of human ceruloplasmin induced by H2O2 to study its oxidative damage. When ceruloplasmin was incubated with H2O2, the frequency of the protein fragmentation increased in a proportion to the concentration of H2O2. It also increased in a time-dependent manner and was accompanied by gradual loss of the oxidase activity. Hydroxyl radical scavengers such as azide and mannitol inhibited the fragmentation of ceruloplasmin. The deoxyribose assay showed that hydroxyl radicals were generated in the reaction of ceruloplasmin with H2O2. Incubation of ceruloplasmin with H2O2 resulted in a time-dependent release of copper ions. The released copper ion may participate in a Fenton-like reaction to produce hydroxyl radical, which enhanced the fragmentation. The protection of the fragmentation by copper chelators such as diethylenetriaminepentaacetic acid and bathocuproine indicates a role for copper ion in the reaction. These results suggest that the fragmentation of ceruloplasmin induced by H2O2 is due to hydroxyl radicals formed by a copper-dependent Fenton-like reaction. 相似文献
4.
Aggregation of alpha-synuclein induced by the Cu,Zn-superoxide dismutase and hydrogen peroxide system 总被引:2,自引:0,他引:2
Alpha-synuclein is a major component of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD) and senile plaques of Alzheimer's disease (AD). Previous studies have shown that the aggregation of alpha-synuclein was induced by copper (II) and H(2)O(2) system. Since copper ions could be released from oxidatively damaged Cu,Zn-superoxide dismutase (SOD), we investigated the role of Cu,Zn-SOD in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both Cu,Zn-SOD and H(2)O(2), alpha-synuclein was induced to be aggregated. This process was inhibited by radical scavengers and spin trapping agents such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone. Copper chelators, diethyldithiocarbamate and penicillamine, also inhibited the Cu,Zn-SOD/H(2)O(2) system-induced alpha-synuclein aggregation. These results suggest that the aggregation of alpha-synuclein is mediated by the Cu,Zn-SOD/H(2)O(2) system via the generation of hydroxyl radical by the free radical-generating function of the enzyme. The Cu,Zn-SOD/H(2)O(2)-induced alpha-synuclein aggregates displayed strong thioflavin-S reactivity, reminiscent of amyloid. These results suggest that the Cu,Zn-SOD/H(2)O(2) system might be related to abnormal aggregation of alpha-synuclein, which may be involved in the pathogenesis of PD and related disorders. 相似文献
5.
The alpha-synuclein is a major component of Lewy bodies that are found in the brains of patients with Parkinson's disease (PD). Also, two point mutations in this protein, A53T and A30P, are associated with rare familial forms of the disease. We investigated whether there are differences in the Cu,Zn-SOD and hydrogen peroxide system mediated-protein modification between the wild-type and mutant alpha-synucleins. When alpha-synuclein was incubated with both Cu,Zn-SOD and H2O2, then the amount of A53T mutant oligomerization increased relative to that of the wild-type protein. This process was inhibited by radical scavenger, spin-trapping agent, and copper chelator. These results suggest that the oligomerization of alpha-synuclein is mediated by the generation of the hydroxyl radical through the metal-catalyzed reaction. The dityrosine formation of the A53T mutant protein was enhanced relative to that of the wild-type protein. Antioxidant molecules, carnosine, and anserine effectively inhibited the wild-type and mutant proteins' oligomerization. Therefore, these compounds may be explored as potential therapeutic agents for PD patients. The present experiments, in part, may provide an explanation for the association between PD and the alpha-synuclein mutant. 相似文献
6.
Kim M Jung W Lee IH Bhak G Paik SR Hahn JS 《Biochemical and biophysical research communications》2008,365(4):628-635
The accumulation of fibrillar form of α-synuclein (α-syn) has been implicated in Parkinson’s disease. Here we show that tubulin can stimulate α-syn fibrillization in vitro in different ways depending on its oligomeric status. The physiological significance of tubulin-seeded α-syn fibrillization is demonstrated by using Saccharomyces cerevisiae as a model system. Perturbation of microtubule system either by treating benomyl that inhibits microtubule assembly or by deleting genes involved in microtubule biogenesis, stimulates α-syn aggregation and toxicity. These results suggest that impairment of the microtubule system may act as a risk factor deteriorating the α-syn-mediated neurodegeneration by increasing the chance of tubulin-seeded α-syn aggregation. 相似文献
7.
E M Link 《Archives of biochemistry and biophysics》1988,265(2):362-372
The present paper is concerned with the influence of hydrogen ion concentration and composition of the medium on clonogenic survival of epithelial cells exposed to hydrogen peroxide in vitro. The survival of cells incubated with H2O2 in phosphate-buffered saline at pH 6.5 was 1 x 10(-2) and increased abruptly to 9 x 10(-2) at pH 7.0. The pH dependence of the cytocidal effect was particularly conspicuous when Eagle's minimum essential medium (SFMEM) was used for cell exposure to H2O2: the survival was characterized by exponential pH dependence and varied from 1 x 10(-1) to 9 x 10(-1) for pH 6.5 and 7.5, respectively, with a superimposed sharp peak value of 9 x 10(-1) at pH 7.0. The enhanced pH dependence of the H2O2 cytotoxicity in SFMEM was found to result from the additive action of glucose and histidine present in this medium. Glucose alone protected the cells with the efficiency decreasing with increasing hydrogen ion concentration. Histidine was responsible for the intermediate maximum in the pH-dependent survival spectrum. In addition, the changes in cell survival were accompanied by pH-dependent release of GSSG from the exposed cells. The GSSG efflux was inhibited by glucose in the medium. The influence of glucose on both the pattern of cell survival and the associated GSSG release indicate that the glutathione peroxidase activity supported by the pentose phosphate pathway is crucial in cell protection against extracellular H2O2 toxicity. 相似文献
8.
Grammatopoulos TN Outeiro TF Hyman BT Standaert DG 《Biochemical and biophysical research communications》2007,363(3):846-851
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease. 相似文献
9.
Bar-On P Crews L Koob AO Mizuno H Adame A Spencer B Masliah E 《Journal of neurochemistry》2008,105(5):1656-1667
Aggregation of α-synuclein (α-syn) is believed to play a critical role in the pathogenesis of disorders such as dementia with Lewy bodies and Parkinson's disease. The function of α-syn remains unclear, although several lines of evidence suggest that α-syn is involved in synaptic vesicle trafficking probably via lipid binding. Moreover, interactions with cholesterol and lipids have been shown to be involved in α-syn aggregation. In this context, the main objective of this study was to determine if statins – cholesterol synthesis inhibitors – might interfere with α-syn accumulation in cellular models. For this purpose, we studied the effects of lovastatin, simvastatin, and pravastatin on the accumulation of α-syn in a stably transfected neuronal cell line and in primary human neurons. Statins reduced the levels of α-syn accumulation in the detergent insoluble fraction of the transfected cells. This was accompanied by a redistribution of α-syn in caveolar fractions, a reduction in oxidized α-syn, and enhanced neurite outgrowth. In contrast, supplementation of the media with cholesterol increased α-syn aggregation in detergent insoluble fractions of transfected cells and was accompanied by reduced neurite outgrowth. Taken together, these results suggest that regulation of cholesterol levels with cholesterol inhibitors might be a novel approach for the treatment of Parkinson's disease. 相似文献
10.
alpha-Synuclein is a component of abnormal protein depositions of Lewy bodies and senile plaques found in Parkinson's and Alzheimer's diseases, respectively. By using chemical coupling reagents such as dicyclohexylcarbodiimide or N-(ethoxycarbonyl)-2-ethoxy-1, 2-dihydroquinoline, the protein was shown to experience self-oligomerization in the presence of either copper(II) or Abeta25-35. The oligomers which appeared as a ladder on a 10-20% Tricine/SDS-PAGE have been suggested to participate in the formation of protein aggregations by possibly providing a nucleation center. Since oxidatively modified protein could increase its own tendency toward protein aggregation, metal-catalyzed oxidation of alpha-synuclein has been examined with copper(II) and hydrogen peroxide in the absence of the coupling reagent. Intriguingly, the protein was also self-oligomerized into an SDS-resistant ladder on the gel. This biochemically specific copper-mediated oxidative oligomerization was shown to be dependent upon the acidic C-terminus of alpha-synuclein because the C-terminally truncated proteins such as alpha-syn114 and alpha-syn97 were not affected by the metal and hydrogen peroxide. More importantly, the oxidative oligomerization was synergistically enhanced by the presence of Abeta25-35, indicating that the peptide interaction with alpha-synuclein facilitated the copper(II) binding to the acidic C-terminus and subsequent oxidative crosslinking. It has been, therefore, suggested that abnormalities in copper and H(2)O(2) homeostasis and certain pathological factors functionally similar to the Abeta25-35 could play critical roles in the metal-catalyzed oxidative oligomerization of alpha-synuclein, which may lead to possible protein aggregation and neurodegenerations. 相似文献
11.
Grzegorz A. Czapski Magdalena GąssowskaAnna Wilkaniec Magdalena CieślikAgata Adamczyk 《FEBS letters》2013
Extracellular alpha-synuclein (ASN) could be involved in the pathomechanism of Parkinson’s disease (PD) via disturbances of calcium homeostasis, activation of nitric oxide synthase and oxidative/nitrosative stress. In this study we analyzed the role of cyclin-dependent kinase 5 (Cdk5) in the molecular mechanism(s) of ASN toxicity. 相似文献
12.
The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. 总被引:21,自引:0,他引:21
Amy B Manning-Bog Alison L McCormack Jie Li Vladimir N Uversky Anthony L Fink Donato A Di Monte 《The Journal of biological chemistry》2002,277(3):1641-1644
alpha-Synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including Parkinson's disease (PD). However, mechanisms that promote intraneuronal alpha-synuclein assembly remain poorly understood. Because pesticides, particularly the herbicide paraquat, have been suggested to play a role as PD risk factors, the hypothesis that interactions between alpha-synuclein and these environmental agents may contribute to aggregate formation was tested in this study. Paraquat markedly accelerated the in vitro rate of alpha-synuclein fibril formation in a dose-dependent fashion. When mice were exposed to the herbicide, brain levels of alpha-synuclein were significantly increased. This up-regulation followed a consistent pattern, with higher alpha-synuclein at 2 days after each of three weekly paraquat injections and with protein levels returning to control values by day 7 post-treatment. Paraquat exposure was also accompanied by aggregate formation. Thioflavine S-positive structures accumulated within neurons of the substantia nigra pars compacta, and dual labeling and confocal imaging confirmed that these aggregates contained alpha-synuclein. The results suggest that up-regulation of alpha-synuclein as a consequence of toxicant insult and direct interactions between the protein and environmental agents are potential mechanisms leading to alpha-synuclein pathology in neurodegenerative disorders. 相似文献
13.
Strus M Brzychczy-Włoch M Gosiewski T Kochan P Heczko PB 《FEMS immunology and medical microbiology》2006,48(1):56-63
This study presents a series of experiments carried out in order to elucidate the role of H2O2 in antimicrobial activity of lactobacilli. Vaginal swabs were collected from 60 premenopausal women and checked for pH and Nugent score, and Lactobacillus species were cultured, phenotyped and genotyped. The main outcome measures involved: (1) species of vaginal lactobacilli most effective in liberating H2O2, (2) minimal microbicidal concentrations of added H2O2, (3) kinetics of H2O2 liberation in relation to oxygen tension, (4) antimicrobial activity of pure H2O2 versus one produced by selected vaginal lactobacilli and the total activity of their culture supernatants. Results showed that H2O2 was liberated especially by: Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus johnsonii and L. gasseri. Hydrogen peroxide reached concentrations from 0.05 to 1.0 mM, which under intensive aeration increased even up to 1.8 mM. Microorganisms related to vaginal pathologies show varied resistance to the action of pure H2O2. Most potent inhibitory activity against bacteria and yeasts was presented by Lactobacillus culture supernate producing H2O2, followed by the nonproducing strain and pure H2O2. To conclude - the antimicrobial activity of lactobacilli is a summation of various inhibitory mechanisms in which H2O2 plays some but not a crucial role, in addition to other substances. 相似文献
14.
Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts 总被引:16,自引:0,他引:16
Survival after H2O2 exposure or heat shock of asynchronous Chinese hamster ovary cells (HA-1) was assayed following pretreatment with mildly toxic doses of either H2O2 or hyperthermia. H2O2 cytotoxicity at 37 degrees C, expressed as a function of mM H2O2 was found to be dependent on cell density at the time of treatment. The density dependence reflected the ability of cells to reduce the effectiveness of H2O2 as a cytotoxic agent. When the survival data were plotted as a function of mumoles H2O2/cell at the beginning of the treatment, survival was independent of cell density. Cells pretreated with 0.1 mM (3-5 mumoles/cell X 10(-7)) H2O2 for 1 hr at 37 degrees C (30-50% survival) became resistant to a subsequent H2O2 treatment 16-36 hr after pretreatment [dose modifying factor (DMF) at 1% isosurvival = 4-6]. Their resistance to 43 degrees C heating, however, was only slightly increased over controls 16-36 hr following pretreatment (DMF at 1% isosurvival = 1.2). During this same interval, the synthesis of protein migrating in the 70 kD region of a one-dimensional SDS-polyacrylamide gel was enhanced twofold in the H2O2-pretreated cells. When the cells were heated for 15 min at 45 degrees C (40-60% survival), the survivors became extremely resistant to 43 degrees C heating and somewhat resistant to H2O2 (DMF at 1% isosurvival = 2). The heat-induced resistance to heat developed much more rapidly (reached a maximum between 6 and 13 hr) following pretreatment than the heat-induced resistance to H2O2 (16-36 hr). The enhanced synthesis of 70 kD protein after heat shock was greater in magnitude and occurred more rapidly following preheating than following H2O2 pretreatment. The cells that became resistant to H2O2 by either pretreatment (H2O2 or heat shock) also increased their ability to reduce the H2O2 cytotoxicity from the treatment medium beyond that of the untreated HA-1 cells. This may be one of the mechanisms involved in the increased resistance and a common adaptive mechanism induced by both stresses. These data indicate that mammalian cells develop resistance to H2O2 following mild pretreatment with H2O2 or heat shock. The cross-resistance induced by H2O2 and heat shock reinforce the hypothesis that some overlap in mechanisms exist between the cellular responses to these two stresses. However, the failure of H2O2 pretreatment to induce much resistance to heat indicates that there are also differences in the actions of the two agents. 相似文献
15.
Krumova P Meulmeester E Garrido M Tirard M Hsiao HH Bossis G Urlaub H Zweckstetter M Kügler S Melchior F Bähr M Weishaupt JH 《The Journal of cell biology》2011,194(1):49-60
Posttranslational modification of proteins by attachment of small ubiquitin-related modifier (SUMO) contributes to numerous cellular phenomena. Sumoylation sometimes creates and abolishes binding interfaces, but increasing evidence points to another role for sumoylation in promoting the solubility of aggregation-prone proteins. Using purified α-synuclein, an aggregation-prone protein implicated in Parkinson's disease that was previously reported to be sumoylated upon overexpression, we compared the aggregation kinetics of unmodified and modified α-synuclein. Whereas unmodified α-synuclein formed fibrils, modified α-synuclein remained soluble. The presence of as little as 10% sumoylated α-synuclein was sufficient to delay aggregation significantly in vitro. We mapped SUMO acceptor sites in α-synuclein and showed that simultaneous mutation of lysines 96 and 102 to arginine significantly impaired α-synuclein sumoylation in vitro and in cells. Importantly, this double mutant showed increased propensity for aggregation and cytotoxicity in a cell-based assay and increased cytotoxicity in dopaminergic neurons of the substantia nigra in vivo. These findings strongly support the model that sumoylation promotes protein solubility and suggest that defects in sumoylation may contribute to aggregation-induced diseases. 相似文献
16.
Rabkin SW Kong JY 《American journal of physiology. Heart and circulatory physiology》2000,279(6):H3089-H3100
We examined the hypothesis that sodium nitroprusside (SNP) produces cell death in cardiomyocytes through generation of H(2)O(2). Embryonic chick cardiomyocytes in culture were treated with SNP, and cell viability was assessed by trypan blue, MTT assay, and fluorescent activated cell sorting (FACS) analysis. SNP for 24 h induced a significant (P < 0.001) dose-dependent loss of cell viability. On MTT assay, the half-maximal effective concentration was 0.53 mM (confidence interval 0.45-0.59 mM). SNP-treated cardiomyocytes displayed characteristic microscopic features of apoptosis: reduced cell size, nuclear disintegration, and membrane bleb formation. FACS analysis demonstrated SNP-induced apoptosis as well as cell changes consistent with necrosis. The proportion of cells with nuclear changes of apoptosis, identified by propidium iodide (PI) staining of permeabilized cells, increased significantly (P < 0.05) after 0.5 mM SNP for 24 h. The proportion of apoptotic cells, characterized by dual staining of intact cardiomyocytes with fluorescein diacetate and PI, was significantly (P < 0.05) increased after treatment with 0.5 mM SNP for 24 h. SNP metabolism and NO production was suggested by the significant (P < 0.05) increase in nitrite generation in the media with 0.5 mM SNP compared with control. SNP-mediated H(2)O(2) production was implicated in the mechanism of SNP-induced cell death. First, SNP produced a significant (P < 0.05) increase in H(2)O(2) detected in the media after 6 or 24 h of SNP treatment. Second, catalase completely blocked the reduction of cell viability induced by 0.1 mM SNP and significantly (P < 0.05) blunted the effect of 0.5 mM SNP. In contrast, the iron chelator deferoxamine did not alter SNP-induced loss of cell viability. FACS analysis showed that the combination of low concentrations of H(2)O(2) (10(-8) M) that did not alter cell viability augmented SNP-induced apoptosis. In contrast, the amount of necrotic cell death was unchanged by the combination of H(2)O(2) and SNP. H(2)O(2) plus SNP produced a dramatic alteration in cell structure with greater membrane bleb formation, shrunken cells, and more intense cytosolic acridine orange staining and nuclear fragmentation than either agent alone. These data indicate the vulnerability of cardiomyocytes to SNP and suggest the involvement of H(2)O(2) in the pathogenesis of SNP-induced cardiomyocyte cell death. Establishing apoptosis as a component of the type of cell death induced by SNP permitted the recognition that SNP-induced apoptosis was increased by chronic treatment with low (subtoxic) concentrations of H(2)O(2). 相似文献
17.
Presence of reduced type 1 copper in ceruloplasmin as revealed by reaction with hydrogen peroxide 总被引:1,自引:0,他引:1
The reaction of hydrogen peroxide with ox or sheep ceruloplasmin leads to approximately 10% increase of the optical absorption band at 610 nm and of the Type 1 EPR signal. No inactivation or denaturation of the protein is apparent up to 15 H2O2 molar excess. Oxygen is able to restore about 50% of the Type 1 copper absorption in ascorbate-reduced ceruloplasmin, while the other half is recovered after addition of H2O2. It appears that H2O2 undergoes a specific redox reaction with ceruloplasmin, which reveals a fraction of the total copper to be present in the native protein as reduced copper. This fraction is apparently Type 1 copper, while Type 2 is not affected by H2O2. 相似文献
18.
19.
Yeast alcohol dehydrogenase (YADH) plays an important role in the conversion of alcohols to aldehydes or ketones. YADH-1 is a zinc-containing protein, and it accounts for the major part of ADH activity in growing baker's yeast. To gain insight into how oxidative modification of the enzyme affects its function, we exposed YADH-1 to hydrogen peroxide in vitro and assessed the oxidized protein by LC-MS/MS analysis of proteolytic cleavage products of the protein and by measurements of enzymatic activity, zinc release, and thiol/thiolate loss. The results illustrated that Cys43 and Cys153, which reside at the active site of the protein, could be selectively oxidized to cysteine sulfinic acid (Cys-SO2H) and cysteine sulfonic acid (Cys-SO3H). In addition, H2O2 induced the formation of three disulfide bonds: Cys43-Cys153 in the catalytic domain, Cys103-Cys111 in the noncatalytic zinc center, and Cys276-Cys277. Therefore, our results support the notion that the oxidation of cysteine residues in the zinc-binding domain of proteins can go beyond the formation of disulfide bond(s); the formation of Cys-SO2H and Cys-SO3H is also possible. Furthermore, most methionines could be oxidized to methionine sulfoxides. Quantitative measurement results revealed that, among all the cysteine residues, Cys43 was the most susceptible to H2O2 oxidation, and the major oxidation products of this cysteine were Cys-SO2H and Cys-SO3H. The oxidation of Cys43 might be responsible for the inactivation of the enzyme upon H2O2 treatment. 相似文献