首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIDS猕猴模型在HIV疫苗研究中的应用   总被引:2,自引:0,他引:2  
对HIV疫苗的研究一直是国际上艾滋病方面研究的热点和难点。动物模型则为疫苗研究必不可缺少的重要工具,缺乏合适的动物模型很大程度上制约了AIDS疫苗的研究。目前在国际上SIV或SHIV感染的猕猴模型为最常用的AIDS研究模型,受猕猴背景及病毒特性等多种因素的影响,使得以上两种模型在HIV疫苗研究中仍存在一定的局限性。为了更好地发挥猕猴模型在HIV疫苗研究中的巨大潜力,开发理想的AIDS猕猴模型已成为目前HIV疫苗研究的首要任务。本文简要介绍了AIDS疫苗的研发策略、研发概况以及SIV/SHIV猕猴模型在HIV疫苗中的应用,并对其中存在的问题及其应用前景进行了探讨。  相似文献   

2.
对HIV疫苗的研究一直是国际上艾滋病方面研究的热点和难点。动物模型则为疫苗研究必不可缺少的重要工具,缺乏合适的动物模型很大程度上制约了AIDS疫苗的研究。目前在国际上SIV或SHIV感染的猕猴模型为最常用的AIDS研究模型,受猕猴背景及病毒特性等多种因素的影响,使得以上两种模型在HIV疫苗研究中仍存在一定的局限性。为了更好地发挥猕猴模型在HIV疫苗研究中的巨大潜力,开发理想的AIDS猕猴模型已成为目前HIV疫苗研究的首要任务。本文简要介绍了AIDS疫苗的研发策略、研发概况以及SIV/SHIV猕猴模型在HIV疫苗中的应用,并对其中存在的问题及其应用前景进行了探讨。  相似文献   

3.
在过去的100年里,动物模型的研究已在人类疫苗的发展中起到至关重要的作用。动物模型的使用不仅有助于疫苗从基本研究转到临床应用,而且动物模型通常能够预测疫苗实用的潜能,从而帮助疫苗的生产商预测财政风险。由于每种动物模型都有其自身的优缺点,选择一种合适的动物模型可促进疫苗研发的顺利进行。  相似文献   

4.
The lack of success of subunit human immunodeficiency virus (HIV) type 1 vaccines to date suggests that multiple components or a complex virion structure may be required. We hypothesized that the failure of current vaccine strategies to induce protective antibodies is linked to the inability of native envelope structures to readily elicit these types of antibodies. We have previously reported on the ability of a formaldehyde-treated, heat-inactivated vaccine to induce modest antibody responses in animal vaccine models. We investigated here whether immunization for HIV with an envelope-modified, formaldehyde-stabilized, heat-inactivated virion vaccine could produce higher-titer and/or broader neutralizing antibody responses. Thus, a clade B vaccine which contains a single point mutation in gp41 (Y706C) that results in increased incorporation of oligomeric Env into virions was constructed. This vaccine was capable of inducing high-titer antibodies that could neutralize heterologous viruses, including those of clades A and C. These results further support the development of HIV vaccines with modifications in native Env structures for the induction of neutralizing antibody responses.  相似文献   

5.
By the end of 2004, more than 20 HIV-1 vaccine candidates will have entered clinical testing in at least 30 trials worldwide. Almost half of these vaccines include nonstructural HIV-1 gene products. This represents an important innovation in the HIV vaccine field, because until 9 years ago not even preclinical testing in small animal models had been carried out with such immunogens. This review briefly discusses the experimental evidence that provides the rationale for the use of nonstructural HIV-1 gene products as vaccine antigens, and summarizes the current status and the future development of these novel vaccines.  相似文献   

6.
Efforts to develop animal models for human immunodeficiency virus type-1 (HIV-1) vaccine testing have focused on lentivirus infection of nonhuman primates. A long-term goal of this primate research is to utilize the models to understand the mechanisms of pathogenesis leading to AIDS. Because the time to disease is compressed relative to HIV infection in humans, therapeutic strategies and compounds can be tested in nonhuman primate models in a shorter time frame and under more controlled conditions than are possible in many clinical studies. Recent interventive studies in primates using antiviral drugs or passive immune globulin (IgG) have demonstrated that multiple log reductions in plasma virus can be achieved and sustained, with accompanying health benefits. Information gained about timing and dosage may be of utility in designing clinical studies. The development of reliable and predictable animal models for effective therapies and vaccines against AIDS remains a critical priority for primate research.  相似文献   

7.
马传染性贫血病毒 (equineinfectiousanemiavirus,EIAV)与人类免疫缺陷病毒(humanimmunodeficiencyvirus ,HIV)同属逆转录病毒科、慢病毒属成员。两者在形态结构、抗原特性、基因组构成以及病毒与宿主的持续作用等方面极为相似 ,且EIAV具有独特的快速发病进程和明显的病程分界 ,使其成为研究HIV的基因变异与临床症状之间相互关系的理想动物模型。EIAV疫苗是我国拥有自立知识产权的世界上唯一的慢病毒疫苗 ,以该疫苗为基础 ,开发新型HIV疫苗将成为今后的发展策略。近年国内外学者对EIAV及HIV的分子生物学进行了深入研究 ,确定了与病毒毒力相关的某些基因及编码蛋白 ,并在疫苗的研究上取得了一定进展。  相似文献   

8.
Although rodent models are very popular for scientific studies, it is becoming more evident that large animal models can provide unique opportunities for biomedical research. Sheep are docile in nature and large in size, which facilitates surgical manipulation, and their physiology is similar to humans. As a result, for decades they have been chosen for several models and continue to be used to study an ever-increasing array of applications. Despite this, their full potential has not been exploited. Here, we review the use of sheep as an animal model for human vaccine development, asthma pathogenesis and treatment, the study of neonatal development, and the optimization of drug delivery and surgical techniques.  相似文献   

9.
Progress towards the development of a vaccine against acquired immune deficiency syndrome is proceeding along several fronts. First and foremost, it rests on the basic research being done with the virus, particularly its mechanisms of replication, pathogenesis and evolution. More directly, progress comes from studies of animal models with the simian and human immunodeficiency viruses where vaccine candidates have proven effective in blocking infection. Principally because the animal models cannot answer all of the critical questions that apply to a vaccine for man, parallel studies in human volunteers have been initiated.  相似文献   

10.
Broadly neutralizing antibodies (bNAbs), able to prevent viral entry by diverse global viruses, are a major focus of HIV vaccine design, with data from animal studies confirming their ability to prevent HIV infection. However, traditional vaccine approaches have failed to elicit these types of antibodies. During chronic HIV infection, a subset of individuals develops bNAbs, some of which are extremely broad and potent. This review describes the immunological and virological factors leading to the development of bNAbs in such “elite neutralizers”. The features, targets and developmental pathways of bNAbs from their precursors have been defined through extraordinarily detailed within-donor studies. These have enabled the identification of epitope-specific commonalities in bNAb precursors, their intermediates and Env escape patterns, providing a template for vaccine discovery. The unusual features of bNAbs, such as high levels of somatic hypermutation, and precursors with unusually short or long antigen-binding loops, present significant challenges in vaccine design. However, the use of new technologies has led to the isolation of more than 200 bNAbs, including some with genetic profiles more representative of the normal immunoglobulin repertoire, suggesting alternate and shorter pathways to breadth. The insights from these studies have been harnessed for the development of optimized immunogens, novel vaccine regimens and improved delivery schedules, which are providing encouraging data that an HIV vaccine may soon be a realistic possibility.  相似文献   

11.
Apical membrane antigen 1: a malaria vaccine candidate in review   总被引:3,自引:0,他引:3  
Apical membrane antigen 1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. Immune responses to Plasmodium AMA1 can have profound parasite-inhibitory effects, both as measured in vitro and in animal challenge models, suggesting AMA1 as a potential vaccine component. However, AMA1 is polymorphic, probably as a result of immune selection operating on an important target of naturally occurring immunity. The current understanding of AMA1 will be presented, particularly in relation to the vaccine potential of AMA1 and the approaches being taken towards clinical development.  相似文献   

12.
Mycobacterium tuberculosis(M.tb) and human immunodeficiency virus(HIV) co-infection has become a public health issue worldwide. Up to now, there have been many unresolved issues either in the clinical diagnosis and treatment of M.tb/HIV coinfection or in the basic understanding of the mechanisms for the impairments to the immune system by interactions of these two pathogens. One important reason for these unsolved issues is the lack of appropriate animal models for the study of M.tb/HIV coinfection. This paper reviews the recent development of research on the animal models of M.tb/HIV co-infection, with a focus on the non-human primate models.  相似文献   

13.
To assess the efficacy of HIV vaccine candidates or preventive treatment, many research groups have started to challenge monkeys repeatedly with low doses of the virus. Such challenge data provide a unique opportunity to assess the importance of exposure history for the acquisition of the infection. I developed stochastic models to analyze previously published challenge data. In the mathematical models, I allowed for variation of the animals'' susceptibility to infection across challenge repeats, or across animals. In none of the studies I analyzed, I found evidence for an immunizing effect of non-infecting challenges, and in most studies, there is no evidence for variation in the susceptibilities to the challenges across animals. A notable exception was a challenge experiment by Letvin et al. Sci Translat Med (2011) conducted with the strain SIVsmE660. The challenge data of this experiment showed significant susceptibility variation from animal-to-animal, which is consistent with previously established genetic differences between the involved animals. For the studies which did not show significant immunizing effects and susceptibility differences, I conducted a power analysis and could thus exclude a very strong immunization effect for some of the studies. These findings validate the assumption that non-infecting challenges do not immunize an animal — an assumption that is central in the argument that repeated low-dose challenge experiments increase the statistical power of preclinical HIV vaccine trials. They are also relevant for our understanding of the role of exposure history for HIV acquisition and forecasting the epidemiological spread of HIV.  相似文献   

14.
Twenty years after its recognition, HIV/AIDS has become the most important infectious disease globally and the leading cause of death in Africa. A preventive vaccine represents the best long-term hope for its control. The development of such a vaccine, however, has encountered a number of scientific challenges, including the lack of information on immune correlates of protection, the limitations in our understanding of the relevance of primate protection experiments in relation to vaccine-induced protection in humans, and the significance of genetic and immunologic variability of HIV strains for potential vaccine efficacy. Despite these uncertainties, the first phase I trial of an HIV vaccine was conducted in the United States in 1987. Since then more than 30 candidate vaccines have been tested in over 70 phase I/II clinical trials in both industrialized and developing countries. The first HIV vaccine trial in a developing country was conducted in 1993, six years after the first trial in the United States. Since then eighteen phase I/II trials and one phase III trial have been or are being conducted in developing countries, and additional phase II and III trials are planned to start in 2003. Most of these initial trials have been conducted in Thailand, but more recently trials have been initiated in Africa, Latin America and the Caribbean. Over the past years, the HIV vaccine development effort has followed three major overlapping paradigms. The first "wave" of candidate vaccines aimed at inducing neutralizing antibodies. The second wave focused on stimulation of CD8+ T-cell responses. The current "wave" of HIV vaccine research is aimed at optimizing both humoral and cell-mediated immune responses. The first generation of candidate vaccines (based on the HIV envelope protein) entered phase III efficacy evaluation in 1998, and definitive results from these trials will become available in 2003. Plans to ensure wide access to future HIV vaccines must be developed well in advance.  相似文献   

15.
The outbreak of severe acute respiratory syndrome (SARS) in 2003 was controlled by public health measures at a time when specific interventions such as antiviral drugs, vaccines and immunotherapy were not available. Since then, several animal models have been developed for the study of SARS and, although no model replicates the human disease in all aspects, the use of animal models for SARS has led to the establishment of several important principles for vaccine and immunotherapy. Consistency and reproducibility of findings in a given model must be demonstrated to establish the superiority of one model over others. Here, we suggest aspects of an ideal animal model for studies of SARS pathogenesis and vaccine development and present our assessment of the strengths and limitations of the current animal models for SARS.  相似文献   

16.
人免疫缺陷病毒/艾滋病细胞免疫疫苗研究进展   总被引:2,自引:0,他引:2  
由于人免疫缺陷病毒(HIV)具有变异快、亚型多、攻击免疫系统等特殊的生物学特点,HIV/艾滋病疫苗至今尚未研制成功。20多年来,艾滋病疫苗研究主要采用中和抗体为主和细胞免疫为主等两种策略,然而目前仍没有实质性突破。诱发广谱有效的强CD8+T细胞反应是研制有效HIV疫苗的重要策略。以次要保护性抗原为靶抗原、优化目的基因表达、多抗原联合使用策略,为研究HIV细胞免疫疫苗引入了新的思路。综合分析这些进展,对于重新思考艾滋病疫苗的研究策略可能会有所帮助。  相似文献   

17.
由于HIV具有与其它微生物极为不同的生物学特点,HIV疫苗的研究面临着前所未有的困难和挑战。二十多年来,艾滋病疫苗研究主要采用了诱发中和抗体为主或细胞免疫为主两种策略,然而至今尚无实质性突破。诱发有效中和抗体一直是传统疫苗研发的重要策略,但HIV的高变异、多亚型等特点,使该策略在HIV疫苗研发中的应用成效甚微。近年来,一些具有广谱中和活性的HIV单抗的发现及其相应抗原表位的阐明,给HIV中和抗体疫苗的研究带来了新的希望。综合分析与评述这些进展,对于重新思考艾滋病疫苗和采用更好的策略进行艾滋病疫苗研究会有所帮助。  相似文献   

18.
In many experiments, researchers would like to compare between treatments and outcome that only exists in a subset of participants selected after randomization. For example, in preventive HIV vaccine efficacy trials it is of interest to determine whether randomization to vaccine causes lower HIV viral load, a quantity that only exists in participants who acquire HIV. To make a causal comparison and account for potential selection bias we propose a sensitivity analysis following the principal stratification framework set forth by Frangakis and Rubin (2002, Biometrics58, 21-29). Our goal is to assess the average causal effect of treatment assignment on viral load at a given baseline covariate level in the always infected principal stratum (those who would have been infected whether they had been assigned to vaccine or placebo). We assume stable unit treatment values (SUTVA), randomization, and that subjects randomized to the vaccine arm who became infected would also have become infected if randomized to the placebo arm (monotonicity). It is not known which of those subjects infected in the placebo arm are in the always infected principal stratum, but this can be modeled conditional on covariates, the observed viral load, and a specified sensitivity parameter. Under parametric regression models for viral load, we obtain maximum likelihood estimates of the average causal effect conditional on covariates and the sensitivity parameter. We apply our methods to the world's first phase III HIV vaccine trial.  相似文献   

19.
The world urgently needs a better tuberculosis vaccine. Bacille Calmette-Guerin (BCG), an attenuated strain of Mycobacterium bovis, has been very widely used as a vaccine for many years but has had no major effect on reducing the incidence of tuberculosis. A number of alternative living and non-living vaccines are being investigated. Live vaccine candidates include genetically modified forms of BCG, genetically attenuated strains of the Mycobacterium tuberculosis complex and genetically engineered vaccinia virus and Salmonella strains. Non-living vaccine candidates include killed mycobacterial species, protein subunits and DNA vaccines. One requirement for acceptance of any new vaccine will be a favourable comparison of the protection it induces relative to BCG in a range of animal models, some of which may need further development. Molecular genetic techniques are now available that enable production of live attenuated strains of the M. tuberculosis complex with vaccine potential. In the first of two broadly different approaches that are being used, large numbers of mutants are produced by transposon mutagenesis or illegitimate recombination and are screened for properties that correlate with attenuation. In the second approach, putative genes that may be required for virulence are identified and subsequently inactivated by allelic exchange. In both approaches, mutants that are attenuated need to be identified and subsequently tested for their vaccine efficacy in animal models. Many mutants of the M. tuberculosis complex have now been produced and the vaccine properties of a substantial number will be assessed in the next 3 years.  相似文献   

20.
Abstract Presence of Helicobacter pylori in the human gastric mucosa is associated with chronic gastritis and promotes the formation of peptic ulceration. Furthermore, long-term gastritis caused by the bacteria represents an increased risk of developing gastric cancer. Much controversy remains about the pathogenic mechanisms by which H. pylori can induce disease because of the limitations of animal models and the relevance of in vitro observations to the in vivo disease process. Studies of putative pathogenic factors such as induction of inflammatory mediators and immune evasion are required to understand how to design a vaccine against the infection. Vaccine adjuvants, delivery systems and therapeutic vaccination are likely to be the areas of major progress in the future. Data related to immunological aspects and vaccine development in potential animal models are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号