首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in membrane permeability (soluble leakage), lipidperoxidation, and activities of superoxide dismutase (SOD) andcatalase have been studied during in situ senescence of leavesof Nicotiana tabacum L., cv. Wisconsin 38. After full leaf expansionwas reached there was a rapid, almost linear increase in therate of 86Rb leakage from the preloaded leaf discs, with leafage. Parallel with this increase in membrane permeability wasa cumulative increase in the level of lipid peroxidation. Atthe same leaf age there were changes in the activities of SODand catalase. SOD activity decreased on the basis of fresh weightbut did not change when measured on the basis of protein contentprobably due to relative stability of SOD during the senescence-associatedgeneral decline in protein content. Catalase activity firstincreased parallel with the chlorophyll content of the leafand then, after full leaf expansion, declined on the basis ofboth fresh weight and protein content. These changes in membranepermeability, lipid peroxidation, and the enzyme activitiescoincide in leaf age with the decline in protein and chlorophyllcontents and in chlorophyll a: b ratio. When the senescenceof the bottom-most leaves was reversed by removing the stemfrom immediately above them, the senescence-associated changesin protein and chlorophyll contents, lipid peroxidation, andthe enzyme activities were also reversed. It is suggested thatleaf senescence may be a consequence of cumulative membranedeterioration due to increasing level of lipid peroxidationprobably controlled by, among other factors, the activitiesof SOD and catalase.  相似文献   

2.
Changes in DNA content of bean (Phaseolus vulgaris) primaryleaves after decapitation were investigated. When apical budswere removed at 11 d, DNA content per leaf increased by about20% at 15 d and then decreased in parallel with the controls.The RNA and chlorophyll contents, fresh weight, and leaf areaexpressed on a single leaf basis changed in the same manneras the DNA content in response to decapitation. But when bothapical and lateral buds were removed, all these values continuedincreasing during the test period. Thus, growing lateral budsand apical buds have the same effect on the DNA change in primaryleaves as that due to ageing of the leaves. Cell number perleaf was not increased by any treatment, indicating that theobserved increase in the DNA content of primary leaves is ascribableto an increase in DNA per cell. Next, the whole shoots above the nodes of primary leaves wereremoved at various ages. The response of primary leaves to decapitationvaried according to their age. With age, they lost the abilityto increase their fresh weight, area, and chlorophyll contentbut not their DNA and RNA contents in response to decapitation.Decapitation stimulated chloroplast replication only withinthe period in which chloroplasts were replicating in controlleaves, but it induced chloroplast enlargement at any age. Therefore,the increase in DNA content after decapitation may be partiallydue to an increase in the amount of chloroplast DNA. When stems were heat-girdled above the nodes of the primaryleaves, these leaves showed responses similar to but smallerthan those to decapitation. The senescence of primary leavesseems to be controlled by the distribution of substances whichare transported from the roots.  相似文献   

3.
The influence of NaCl on senescence-related parameters (proteinand chlorophyll concentrations, membrane permeability and chlorophyllfluorescence) was investigated in young and old leaves of fiverice cultivars differing in salt resistance. NaCl hastened thenaturally-occurring senescence of rice leaves which normallyappears during leaf ontogeny: it decreased chlorophyll and proteinconcentrations and increased membrane permeability and malondialdehydesynthesis. Such an acceleration of deteriorative processes affectedall leaves in salt-sensitive cultivars while it was more markedin oldest than in youngest leaves of salt-resistant genotypes.NaCl-induced senescence also involved specific modifications,such as an increase in basal non-variable chlorophyll fluorescence(F 0) recorded in all cultivars or a transient increase in solubleprotein concentration recorded in salt-resistant genotypes only.Alteration of membrane permeability appeared as one of the firstsymptoms of senescence in rice leaves and allowed discriminationamong cultivars after only 7 d of stress. In contrast, F v/F mratio (variable fluorescence/maximal fluorescence) was thesame for all cultivars during the first 18 d of stress and thuscould not be used for identifying salt-resistant rice exposedto normal light conditions. Relationships between parametersinvolved in leaf senescence are discussed in relation to salinityresistance of rice cultivars. Chlorophyll concentration; chlorophyll fluorescence; electrolyte leakage; magnesium; malondialdehyde; membrane permeability; NaCl; Oryza sativa L.; protein; rice; salinity resistance; senescence; UV absorbing substances  相似文献   

4.
It has been suggested that antioxidants play a role in regulating or modulating senescence dynamics of plant tissues. Ethylene has been shown to promote early plant senescence while controlled atmospheres (CA; reduced O2 levels and elevated CO2 levels) can delay its onset and/or severity. In order to examine the possible importance of various antioxidants in the regulation of senescence, detached spinach (Spinacia oleracea L.) leaves were stored for 35 d at 10 degrees C in one of three different atmospheres: (1) ambient air (0.3% CO2, 21.5% O2, 78.5% N2), (2) ambient air + 10 ppm ethylene to promote senescence, or (3) CA (10% CO2, 0.8% O2 and 89.2% N2) to delay senescence. At weekly intervals, material was assessed for activities of the antioxidant enzymes ascorbate peroxidase (ASPX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6), dehydroascorbate reductase (DHAR; EC 1.8.5.4), glutathione reductase (GR; EC 1.6.4.2), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), and superoxide dismutase (SOD; EC 1.15.1.1), and concentrations of the water-soluble antioxidant compounds ascorbate and glutathione. Indicators of the rate and severity of senescence (lipid peroxidation, chlorophyll, and soluble protein levels) were also determined. Results indicated that the rate and severity of senescence was similar between the leaves stored in ambient air or CA until day 35, at which point the ambient air-stored leaves exhibited a sharp increase in lipid peroxidation. Tissues under both storage regimes demonstrated significant declines only in levels of ASPX, CAT, and ascorbate. Glutathione content in the CA-stored tissue also significantly dropped, but only on day 35. In contrast, spinach leaves stored in ambient air + ethylene experienced a rapid decrease in levels of all the antioxidants assessed except SOD. Declines in levels of ASPX, CAT, and ascorbate over the 35 d storage period regardless of the composition of the storage atmosphere suggests that regulation of H2O2 levels plays an important role in both the dynamics and severity of post-harvest senescence of spinach.  相似文献   

5.
Primary leaves of intact bean plants (Phaseolus vulgaris L.cv. Yamashiro-kurosando-saito) were treated with benzyladenine(BA) beginning on the seventh day after sowing when cell proliferationin the leaves had finished. Nuclear DNA contents were measuredby cytofluorometry combined with 4',6-diamidino-2-phenylindole(DAPI) staining. In the untreated controls, most mesophyll andabaxial epidermal cells contained a nucleus whose DNA contentwas 2C; whereas most adaxial epidermal cells contained a 4Cnucleus. Benzyladenine treatment induced 4C nuclec in mesophylland abaxial epidermal cells; but BA induced 8C nuclei in adaxialepidermal cells. To compare the effects of endogenous cytokininaccumulation, bean plants were decapitated above the primaryleaves on day 7 and continually disbudded thereafter. Changesin the nuclear DNA content in primary leaves attached to thedecapitated plants was similar to that for BA-treated primaryleaves. No multinucleate cells were formed and no mitotic figureswere present in the BA-treated leaves or in the primary leavesof decapitated plants. Our results indicate that both BA treatmentand decapitation induced one round of nuclear DNA synthesiswithout mitosis in a large number of mesophyll and epidermalcells.  相似文献   

6.
Summary Benzyladenine (BA) applied to primary leaves of intact bean plants delayed the senescence of both the leaves and the entire shoot. The retardation of senescence was manifested in higher levels of chlorophyll, protein, RNA and ribonuclease activity at all stages of development. Also, the levels of incorporation of labelled precursors into protein and RNA were enhanced. The effect of BA was largely independent of light intensity and the compound did not act merely as a nitrogen source.  相似文献   

7.
以大豆幼苗初生叶为材料研究了衰老过程中质膜蛋白激酶自磷酸化状态和催化活性的变化。结果发现质膜上一个57kD的蛋白激酶分子上有多个自磷酸化位点,而且自磷酸化反应能提高该酶催化组蛋白H1磷酸化的激酶活力。进一步的研究表明诱导衰老处理造成的57kD蛋白激酶自磷酸化状态的变化,可能对调节它在衰老过程中催化活性的变化起重要作用;而外源6-BA预处理则能够维持57kD蛋白激酶体内高自磷酸化状态,保持该激酶在衰老过程中的催化活力。对衰老和6-BA处理过程中质膜上39和47kD蛋白激酶自磷酸化状态变化的研究表明,这两种激酶可能参与大豆叶片对6-BA刺激信号的传导和/或应答反应过程。  相似文献   

8.
Bud removal and decapitation (disbudding) of plants of tomato(Lycopersicon esculentum Miller) and tobacco (Nicotiana tabacumL.) resulted in an increase in both the concentration and thetotal flux of cytokinin in bleeding xylem sap. There was a retardationin the rate of chlorophyll loss from leaves of disbudded plantsof both species. Ultrastructural examination of the chloroplastsof disbudded tomato plants revealed a maintenance of chloroplastintegrity, compared with chloroplasts from control plants. Itis suggested that the delaying of leaf senescence observed indisbudded plants is due to an increased availability of cytokininto these leaves.  相似文献   

9.
A non-yellowing mutant of Phaseolus vulgaris L. was used toinvestigate factors involved in chlorophyll breakdown duringfoliar senescence. The mutant showed physiological changes similarto those of the normal yellowing type during senescence exceptthat leaf chlorophyll did not decline. Transmission electronmicroscope studies did not reveal appreciable differences inchloroplast ultrastructure between the two genotypes, suggestingthat chloroplast membrane integrity was not the factor preventingchlorophyll degradation in the mutant. However, the lack ofplastoglobuli in senescent mutant chloroplasts suggested thatthe lipid environment may be different from that of senescentnormal chloroplasts. Banding patterns of total soluble protein,resolved by sodium dodecyl sulphate-poly aery lamide gel electrophoresisshowed few, if any, differences between mature non-senescentnormal and mutant leaves; however, bands at 14 kD and 58 kDdiminished in senescent normal leaves, but remained in senescentmutant non-yellowing leaves. Key words: Non-yellowing mutant, Phaseolus vulgaris, senescence, chlorophyll degradation  相似文献   

10.
The activities of polyphenol oxidase and peroxidase per unitarea of attached tobacco leaves increased as the leaves expanded,and reached a stable level in the mature leaves. After the onsetof senescence the enzyme activities fell rapidly, but at a laterstage they showed a small rise. Enzyme activities in tissuestaken from non-senescent leaves increased during incubationat 20 °C. These increases were sensitive to inhibitors ofprotein synthesis. Enzyme activities in tissues taken from leavesin early senescence increased during incubation at 35 °Cbut not at 20 °C. These increases were very largely insensitiveto inhibitors of protein synthesis and were not apparently relatedto de novo protein synthesis. There were no increases in enzymeactivities in tissues taken from leaves in late senescence andincubated at 35 °C or 20 °C.  相似文献   

11.
12.
Changes in carbon fixation rate and the levels of photosyntheticproteins were measured in fourth leaves of Lolium temulentumgrown until full expansion at 360 µmol quanta m–2s–1 and subsequently at the same irradiance or shadedto 90 µmol m–2 s–1. Ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco), light-harvesting chlorophylla/b protein of photosystem II (LHCII), 65 kDa protein of photosystemI (PSI), cytochrome f (Cytf) and coupling factor 1 (CF1) declinedsteadily in amount throughout senescence in unshaded leaves.In shaded leaves, however, the decrease in LHCII and the 65kDa protein was delayed until later in senescence whereas theamount of Cyt f protein decreased rapidly following transferto shade and was lower than that of unshaded leaves at the earlyand middle stages of senescence. Decreases in the Rubisco andCF1 of shaded leaves occurred at slightly reduced rates comparedwith unshaded leaves. These results indicate that chloroplastproteins in fully-expanded leaves are controlled individually,in a direction appropriate to acclimate photosynthesis to agiven irradiance during senescence. (Received August 20, 1992; Accepted January 5, 1993)  相似文献   

13.
N6-Benzyladenine (BA) was applied to intact bean (Phaseolusvulgaris L.) primary leaves at 2 and 6 days after imbibition,when they were in the cell division and post-cell division stages,respectively. BA treatment at day 2 temporarily inhibited an increase in chlorophyllcontent in the following day, but stimulated it in later days.No such inhibition by BA was observed for changes with timein DNA, RNA, and protein content and f. wt. On the other hand,BA treatment at day 6 enhanced RNA and protein content, withoutsignificant influence on DNA and chlorophyll content and f.wt. The mode of cytokinin action on greening in leaves during cell-divisiongrowth seems to be different from that in etiolated cotyledons. Phaseolus vulgaris L., bean, greening, benzyladenine, DNA, RNA, protein  相似文献   

14.
The levels of glucose, sugar phosphates, and adenosine phosphates were determined in primary leaves of intact bean plants during normal senescence and compared to leaves in which senescence was delayed by application of benzyladenine (BA). In both cases there was a rise with time in the levels of glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate, and a decline in 2-phosphoglyceric acid, inorganic phosphate, and the adenosine phosphates (AMP, ADP, ATP). The levels of fructose 1,6-diphosphate remained fairly constant. Although the levels of hexose phosphates, adenosine phosphates, and inorganic phosphate were lower in the BA-treated leaves, the incorporation of 32P into these compounds by 3- and 6-week-old plants was higher than in the controls. These results suggest that the retardation of leaf senescence by BA in intact bean plants is associated with increased utilization of metabolites, indicating a more rapid turnover of the adenosine phosphates. It is concluded that this effect is brought about by a regulatory coordination of metabolic processes in relation to energy production and utilization.  相似文献   

15.
Effects of temperature and benzyladenine (BA) on the senescenceof intact primary leaves of soybean were investigated. Comparedwith high temperature (30?C for day and 25?C for night), lowtemperature (15?C for day and 13?C for night) significantlyretarded senescence of intact primary leaves. Repeated dailytreatment of the primary leaves with BA (200 mg/liter) beginning15 days after growth at high temperature resulted in retardationof the senescence process. The lower activity of cytokininsin the primary leaves of seedlings grown under high temperaturemay be responsible for rapid senescence. (Received January 14, 1980; )  相似文献   

16.
The peeled Avena sativa L. leaf-system has been used as a simpleand rapid model, which allows the study of the mechanisms ofpolyamine action during senescence responses induced by osmoticstress. The use of guazatine, an inhibitor of polyamine oxidaseactivity, has demonstrated the existence of a positive correlationbetween high levels of spermidine and spermine and delay ofsenescence in oat leaves and mesophyll protoplasts. The availabilityof antibodies specific for key polypeptides of thylakoid membranesin combination with ultrastructural studies have led to thediscovery that spermine stabilizes the molecular compositionand preserves the integrity of thylakoid membranes. The analysesof malondialdehyde and lipoxygenase levels has revealed thatpolyamines and guazatine treatments may prevent membrane destabilization,at least in part, by inhibiting lipid peroxidation. Finally,the availability of a cDNA coding for oat arginine decarboxylase(ADC) and the generation of ‘site-directed’ antibodiesspecific for ADC have led to the establishment of the basisfor a model of regulation of ADC gene expression in oat leaves. Key words: Avena sativa, polyamines, guazatine, osmotic stress, senescence  相似文献   

17.
18.
A fragment of the NDH-F subunit of the plastid NAD(P)H dehydrogenasecomplex (NAD(P)H-plastoquinone-oxidoreductase) from barley wasexpressed as a fusion protein in Escherichia coli and an antibodyto the fusion protein was prepared. Western blot analysis usingthe anti-NDH-F antibody showed specificity towards a plastidpolypeptide of approximately 70 kDa present in both photosyntheticand non-photosynthetic barley tissue. The polypeptide was foundin thylakoid membranes of green leaves whereas in etiolatedleaves it was shown to be associated with the membrane fractionof etioplasts. NDH-F levels were higher in roots and etiolatedtissue than in greening or young leaves. During leaf ontogeny,NDH-F levels decreased from young to mature tissue but increasedduring senescence. The accumulation of NDH-F in thylakoids ofyoung leaves was stimulated by photooxidative treatment. Theresults indicate a high degree of expression of plastid ndhgenes (which encode NAD(P)H dehydrogenase sub-units) in non-photosyntheticplastids and under conditions which impair the photosyntheticactivity of chloroplasts. In addition to its putative implicationin photosynthetic electron transport, a non-photosynthetic role,such as chloro-respiration, is proposed for the plastid NAD(P)Hdehydrogenase complex. (Received May 20, 1997; Accepted October 8, 1997)  相似文献   

19.
Chloroplast protein synthesis was measured during the expansion,maturity and senescence of the oldest leaf of barley, Hordeumvulgare L., var. Hassan. A maximum rate of protein synthesisoccurred near the end of the expansion stage 9 d after sowing.Protein synthesis increased again at the beginning of senescenceand reached a new maximum at day 14 after sowing. Detachmentand incubation of leaves in the dark stimulated chioroplastprotein synthesis by fully expanded or by senescent leaves butnot by expanding leaves. If the detached leaves were kept inthe light, chloroplast protein synthesis was stimulated in fullyexpanded but not in senescent leaves. Short treatments (18 h)of leaf segments with growth substances in either light or indarkness, significantly changed the rate of protein synthesisshown by chloroplasts. The relationship between chloroplastprotein synthesis and leaf senescence is discussed. Key words: Hormones, light, maturity  相似文献   

20.
A 76 amino acid sequence of NDH-A (the protein encoded by plastidndhA gene) from barley (Hordeum vulgare L.) was expressed asa fusion protein with rß-galactosidase in E. coli.The corresponding antibody generated in rabbits was used toinvestigate localization, expression and synthesis in vitroof NDH-A. NDH-A was identified as a 35 kDa polypeptide localizedin thylakoid membrane. Western blots shows a large increasein NDH-A levels when barley leaves were incubated under photooxidativeconditions, which was more pronounced in mature-senescent leavesthan in young leaves. Immunoprecipitation of the [35S]methioninelabelled proteins, synthesized in vitro by isolated chloroplasts,demonstrated the synthesis in chloroplasts of the NDH-A 35 kDapolypeptide when barley leaves had been incubated under photooxidativeconditions. The results indicate that ndh genes may be involvedin the protection of chloroplasts against photooxidative stress,particularly in mature-senescent leaves. (Received November 13, 1995; Accepted February 5, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号