首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The goldfish brain contains two molecular forms of gonadotropin-releasing hormone (GnRH): salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). In a preliminary report, we demonstrated the stimulation of gonadotropin hormone (GtH) subunit and growth hormone (GH) mRNA levels by a single dose of GnRH at a single time point in the goldfish pituitary. Here we extend the work and demonstrate time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH gene expression in vivo and in vitro. The present study demonstrates important differences between the time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH mRNA levels. Using primary cultures of dispersed pituitary cells, the minimal effective dose of cGnRH-II required to stimulate GtH subunit mRNA levels was found to be 10-fold lower than that of sGnRH. In addition, the magnitudes of the increases in GtH subunit and GH mRNA levels stimulated by cGnRH-II were found to be higher than the sGnRH-induced responses. However, no significant difference was observed between sGnRH and cGnRH-II-induced responses in vivo. Time-related studies also revealed significant differences between sGnRH- and cGnRH-II-induced production of GtH subunit and GH mRNA in the goldfish pituitary. In general, the present study provides novel information on time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH mRNA levels and provides a framework for further investigation of GnRH mechanisms of action in the goldfish pituitary.  相似文献   

2.
Gonadotropin-releasing hormone (GnRH) is an important regulator of reproduction in all vertebrates through its actions on the production and secretion of pituitary gonadotropin hormones (GtHs). Most vertebrate species express at least two GnRHs, including one form, designated chicken (c)GnRH-II or type II GnRH, which has been well conserved throughout evolution. The goldfish brain and pituitary contain salmon GnRH and cGnRH-II. In goldfish, GnRH-induced luteinizing hormone (LH) secretion involves PKC; however, whether PKC mediates GnRH stimulation of GtH subunit mRNA levels is unknown. In this study, we used inhibitors and activators of PKC to examine its possible involvement in GnRH-induced increases in GtH-alpha, follicle-stimulating hormone (FSH)-beta and LH-beta mRNA levels in primary cultures of dispersed goldfish pituitary cells. Treatment with PKC inhibitors calphostin C and GF109203X unmasked a basal repression of GtH subunit mRNA levels by PKC; both inhibitors increased GtH subunit mRNA levels in a dose-dependent manner. PKC activators, 12-O-tetradecanoylphorbol 13-acetate (TPA), and 1,2-dioctanoyl-sn-glycerol, stimulated GtH subunit mRNA levels, whereas an inactive phorbol ester (4-alpha-TPA) was without effect. Thus, a dual, inhibitory and stimulatory, influence for PKC in the regulation of GtH subunit mRNA levels is suggested. In contrast, PKC inhibitor- and activator-induced effects were, for the most part, additive to those of GnRH, suggesting that conventional and novel PKCs are unlikely to be involved in GnRH-stimulated increases in GtH subunit mRNA levels. Our data illustrate major differences in the signal transduction of GnRH effects on GtH secretion and gene expression in the goldfish pituitary.  相似文献   

3.
In order to understand the mechanisms implicated at the hypothalamo-pituitary level in growth-reproduction interaction in salmonids, the gonadotropin-releasing hormone (GnRH) action on growth hormone (GH) release was studied, in rainbow trout (Oncorhynchus mykiss). In vivo, acute treatment with salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and an sGnRH analogue [(DArg6Pro9)sGnRH] was performed on catheterized fish. The different forms of GnRH have no effect on plasma GH levels of immature and mature fish, but induce a stimulation of gonadotropin (GtH) release in mature fish. In the present work we have adapted and validated a culture system for GH regulation studies. In this system, increasing doses of sGnRH, (DArg6Pro9)sGnRH and cGnRH-II are inactive on GH release (24 hr incubation) in immature or mature fish, but stimulate GtH release in a dose-dependent manner. sGnRH (10−6 M) has no action on GH release, whatever the incubation time (15 min–24 hr). In a perifusion system, sGnRH also has no action on GH release but stimulates GtH release. The present results obtained using in vivo and in vitro techniques adapted for GH regulation studies, show that GnRH does not function as a growth hormone-releasing factor in rainbow trout as it does in goldfish.  相似文献   

4.
All non-mammalian vertebrates as well as marsupial mammals have two or more forms of gonadotropin-releasing hormone (GnRH) in the brain. Goldfish brain and pituitary contains two molecular forms of GnRH, salmon GnRH ([Trp7, Leu8]m-GnRH; s-GnRH) and chicken GnRH-II ([His5, Trp7, Tyr8]m-GnRH; cII-GnRH). Both sGnRH and cII-GnRH stimulate gonadotropin (GtH) as well as growth hormone (GH) release from the goldfish pituitary. The purpose of the present study was to study the activity of the five known forms of GnRHs as well as analogs of mammalian GnRH (m-GnRH) with variant amino acid residues in positions 5, 7 and 8 in terms of binding to GnRH receptors, and release of GTH and GH from the perifused fragments of goldfish pituitary in vitro. All five vertebrate GnRH peptides stimulated both GtH and GH release in a dose-dependent manner, although their potencies were very different. cII-GnRH was somewhat more active than s-GnRH in releasing GtH, whereas s-GnRH tended to have a greater potency than cII-GnRH in terms of GH release. Both chicken GnRH-I (cI-GnRH) and lamprey GnRH (l-GnRH) were significantly less potent than mGnRH, s-GnRH and cII-GnRH in releasing GtH and GH. cII-GnRH binds with higher affinity for the high affinity binding sites compared to all other native peptides. The activity of [Trp7]-GnRH was similar to both s-GnRH and cII-GnRH in releasing GtH and GH. Substitution of His5 resulted in a significant decrease in GtH releasing potencies compared to mGnRH, sGnRH and cII-GnRH. [His5]-GnRH also had lower GH releasing potency than mGnRH and sGnRH. Tyr8, His8 and Leu8 substitutions caused significant decreases in GtH releasing potencies compared to mGnRH, s-GnRH and cII-GnRH, but did not cause a significant change in GH releasing potency. The combination of [His5, Trp7]-GnRH had GtH and GH releasing activities similar to m-GnRH, s-GnRH and cII-GnRH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
Using radioimmuno- and ribonuclease protection assays, we examined the effects of gonadotropin-releasing hormone and its analogs on the growth hormone mRNA level and growth hormone secretion in common carp (Cyprinus carpio) pituitary fragments with static incubation. After a 24 h treatment, sGnRH ([Trp(7),Leu(8)]-LHRH) and sGnRH-A ([D-Arg(6),Pro(9)]-LHRH) (0.1 nM-1 microM) elevated the GH mRNA level and stimulated the GH secretion in a dose-dependent manner, with a higher potency for sGnRH-A. In a time-course experiment, the function of sGnRH and sGnRH-A (10 nM) on GH secretion was observed after 6 h incubation, while no action on the GH mRNA level were noted until 12 h after treatment. Comparing mammalian GnRH, avian GnRH and piscine GnRH, sGnRH and sGnRH-A showed the highest potency in increasing GH mRNA level and GH-release, followed by cGnRH-II ([His(5),Tyr(8)]-LHRH), and finally LHRH and LHRH-A([D-Trp(6), Pro(9)]-LHRH). These findings, taken together, suggest that GnRH not only can influence GH release, but also play a role in the regulation of GH synthesis.  相似文献   

7.
Ran XQ  Li WS  Lin HR 《生理学报》2004,56(5):644-650
研究斜带石斑鱼生长激素分泌及其mRNA表达的调控规律对于性别分化的控制、临床药物的选择,以及石斑鱼的增养殖等均具有重要的理论意义和实践意义。本文应用静态孵育系统,采用放射免疫测定法和化学发光液相杂交实验,研究GnRH和DA对斜带石斑鱼GH分泌、GHmRNA合成的调控作用。100nmol/LsGnRH作用斜带石斑鱼脑垂体碎片1也4h,明显促进GH的释放和GHmRNA的合成,并具有时间依存性;10nmol/L~1μmol/LsGnRH作用1h能明显促进斜带石斑鱼脑垂体释放GH,促进GHmRNA的合成,表现出明显的剂量效应。100nmol/L、1μmol/LmGnRH作用1h以一定的剂量依存方式促进GH的释放、促进GHmRNA的合成,但mGnRH的效应比相应剂量的sGnRH的作用弱。APO为DA受体的非选择性激动剂,不同剂量APO对斜带石斑鱼脑垂体碎片的作用结果显示,10nmol/L-1μmol/L APO以剂量依存方式促进斜带石斑鱼脑垂体碎片释放GH、促进GHmRNA的合成:1μmol/LAPO作用12h以上明显促进GH的释放和GHmRNA的合成,并随时间的延长而增加。与sGnRH对斜带石斑鱼GH释放、GHmRNA合成的作用相比,APO的作用较弱。本文研究结果证实GnRH和DA能促进斜带石斑鱼脑垂体GH释放和GHmRNA合成。  相似文献   

8.
Gonadotropin-releasing hormone (GnRH) stimulates release of gonadotropin hormone (GTH) through interaction with high affinity receptors in the goldfish pituitary. In the present study, we investigated desensitization of two native GnRH peptides, [Trp7, Leu8]-GnRH (sGnRH) and [His5, Trp7, Tyr8]-GnRH (cGnRH-II), using superfused fragments of goldfish pituitary in vitro. Pulsatile treatment with either sGnRH or cGnRH-II (2-min pulses given every 60 min) resulted in dose-dependent secretion of GTH from the goldfish pituitary; cGnRH-II had a greater GTH release potency and displayed a greater receptor binding affinity than sGnRH. Both sGnRH and cGnRH-II-induced GTH release were partially inhibited by concomitant treatment with either [D-Phe2, Pro3, D-Phe6]-GnRH or [D-pGlu1, D-Phe2, D-Trp3.6]-GnRH. These antagonists had greater receptor binding affinities than the native peptides, with no stimulatory action on GTH release in the absence of the GnRH agonists. Continuous treatment with either sGnRH or cGnRH-II (10(-7) M), rapidly desensitized pituitary GTH release in a biphasic fashion; initially there was a rapid increase in GTH release of approximately 10-20-fold (phase 1), followed by a sharp decline in GTH release, reaching a stable concentration 2-3-fold above the basal level (phase 2). Further stimulation of the pituitaries with sGnRH or cGnRH-II (10(-7) M) (second treatment) after 60 min recovery resulted in a significantly lower sGnRH or cGnRH-II-induced GTH release compared to that observed during the initial treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The involvement of protein kinase C (PKC) and arachidonic acid (AA) pathways were investigated in the GnRH regulation of oocyte meiosis and follicular testosterone production in the goldfish ovary. The results clearly demonstrate differences in the postreceptor mechanisms involving the stimulatory and inhibitory actions of GnRH peptides on basal and gonadotropin (GtH)-induced reinitiation of oocyte meiosis and steroidogenesis. In isolated goldfish follicles in vitro, the observed stimulatory effects of both salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II) on germinal vesicle breakdown were completely blocked by addition of PKC inhibitors, suggesting the involvement of PKC, presumably through activation of phospholipase C/diacylglycerol pathways in the GnRH-induced reinitiation of oocyte meiosis. Administration of an AA metabolism inhibitor, however, only blocked the stimulatory effect of sGnRH without affecting cGnRH-II-induced meiosis. As observed previously, in the presence of GtH, sGnRH was found to inhibit GtH-induced resumption of meiosis and testosterone production, whereas cGnRH-II was without effect. The inhibitory effect of sGnRH on GtH-induced meiosis and steroidogenesis was completely reversed by addition an AA metabolism inhibitor, whereas PKC inhibitors had no effect. These findings provide functional evidence in support of the novel hypothesis that goldfish ovarian follicles contain GnRH-receptor subtypes with different ligand selectivity mediating stimulatory and inhibitory actions of sGnRH and cGnRH in the goldfish ovary.  相似文献   

10.
We studied the in vitro and in vivo effects of octanoylated goldfish ghrelin peptides (gGRL-19 and gGRL-12) on luteinizing hormone (LH) and growth hormone (GH) release in goldfish. gGRL-19 and gGRL-12 at picomolar doses stimulated LH and GH release from dispersed goldfish pituitary cells in perifusion and static incubation. Incubation of pituitary cells for 2 h with 10 nM gGRL-12 and 1 or 10 nM gGRL-19 increased LH-beta mRNA expression, whereas only 10 nM gGRL-19 increased GH mRNA expression. Somatostatin-14 abolished the stimulatory effects of ghrelin on GH release from dispersed pituitary cells in perifusion and static culture. The GH secretagogue receptor antagonist d-Lys(3)-GHRP-6 inhibited the ghrelin-induced LH release, whereas no effects were found on stimulation of GH release by ghrelin. Intracerebroventricular injection of 1 ng/g body wt of gGRL-19 or intraperitoneal injection of 100 ng/g body wt of gGRL-19 increased serum LH levels at 60 min after injection, whereas significant increases in GH levels were found at 15 and 30 min after these treatments. Our results indicate that, in addition to its potent stimulatory actions on GH release, goldfish ghrelin peptides have the novel function of stimulating LH release in goldfish.  相似文献   

11.
鲤鱼发育早期HPG轴和GH/IGF轴相关因子的转录起始分析   总被引:2,自引:1,他引:1  
采用RT-PCR的方法,以不同发育时期的鲤鱼胚胎和幼鱼为材料,研究了与鱼类生殖相关的HPG轴以及与生长相关的GH/IGF轴中GnRH、GtH以及GH、GHR和IGF重要信号分子的转录起始特征.结果显示,sGnRH、cGnRH、GtH-Ⅰβ卢亚基和GHR于鲤鱼胚胎受精后20h开始转录,IGF-1于受精后23h开始转录,GtH-Ⅱβ亚基于受精后26h开始转录,GtH α亚基于受精后46h开始转录,GH于1dph(孵出后第1天)开始转录.其中,GHR和IGF-1均早于GH开始转录,GtH α亚基和β亚基的转录起始时间不同步.研究结果为揭示鲤鱼生殖与生长间的调控机制积累了重要的科学依据.  相似文献   

12.
The pleuronectid barfin flounder (Verasper moseri) expresses three forms of gonadotropin-releasing hormone (GnRH) in the brain. To clarify the physiological roles of the respective forms during testicular maturation, changes in brain GnRH mRNA levels and pituitary GnRH peptide levels were examined by real-time quantitative PCR and time-resolved fluoroimmunoassay, respectively. Fish hatched in April 2000. The gonadosomatic index remained low until October 2001 and then rapidly increased in January 2002. Fish continued to grow from hatching through testicular maturation. Fish spermiated in March 2002. The amount of seabream GnRH (sbGnRH) mRNA per brain significantly increased in January 2002 and remained at high levels in March 2002. The amounts of salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II) mRNA per brain did not show significant changes during the experimental periods. Pituitary sbGnRH peptide content significantly increased in March 2002. Pituitary sGnRH peptide and cGnRH-II peptide contents were extremely low compared to sbGnRH peptide levels and showed no significant changes during the experiment. These results indicate that sbGnRH is involved in the testicular maturation of barfin flounder.  相似文献   

13.
K L Yu  N M Sherwood  R E Peter 《Peptides》1988,9(3):625-630
Two molecular forms of gonadotropin-releasing hormone (GnRH) were identified in the extracts of various brain areas, spinal cord and pituitary in female and male goldfish and had chromatographic and immunological properties similar to [His5, Trp7, Tyr8]-GnRH (cGnRH-II) and [Trp7,Leu8]-GnRH (sGnRH). Radioimmunoassay using different GnRH antisera after high pressure liquid chromatography did not reveal significant peaks of mammalian GnRH, [Gln8]-GnRH and [Tyr3,Leu5,Glu6,Trp7,Lys8]-GnRH in the brain extracts. The proportion of cGnRH-II-like immunoactivity to sGnRH-like immunoactivity was higher in the caudal brain areas compared to the rostral areas. The differential distribution of two GnRH forms suggest that the different GnRH forms may have different physiological functions.  相似文献   

14.
The ability of gonadotropin releasing hormone (GnRH) to elevate cellular levels of mRNA for beta-subunit of luteinizing hormone (LH) has been examined in monolayer cultures from rat pituitary. Low concentrations of GnRH (100 pM) induced a 6.8-fold increase in LH-beta mRNA, while higher concentrations of GnRH were less effective. The low concentrations of GnRH (100 pM) did not result in altered GnRH receptor levels (92 +/- 12% compared to controls) after 24 h treatment but did increase protein kinase C activity to 249 +/- 16%. The protein kinase C activator, phorbol 12-myristate 13-acetate, at concentrations (2-20 nM) which did not deplete protein kinase C, stimulated LH-beta mRNA levels 2-5-fold after 24 h. Higher concentrations of phorbol 12-myristate 13-acetate, which depleted protein kinase C activity, substantially reduced the ability of 100 pM GnRH to stimulate increases in LH-beta mRNA levels. As previously observed, protein kinase C-depleted cells exhibited normal LH release in response to GnRH stimulation. These studies demonstrate that low concentrations of GnRH may have an important role in regulation of gonadotropin biosynthesis. Furthermore, the results suggest that activation of protein kinase C is sufficient to stimulate increases in LH-beta mRNA levels and that protein kinase C is necessary for normal GnRH stimulation of LH-beta mRNA levels. Accordingly, we postulate that protein kinase C may mediate the action of GnRH on LH-beta mRNA levels.  相似文献   

15.
16.
To clarify the role of gonadotropin-releasing hormone (GnRH) in the fish immune system, in vitro effect of GnRH was examined in phagocytic leucocytes of rainbow trout (Oncorhynchus mykiss). Gene expression of GnRH-receptor was detected by RT-PCR in leucocytes from head kidney. Administration of sGnRH increased proliferation and mRNA levels of a proinflammatory cytokine, tumor necrosis factor (TNF)-α, in trout leucocytes. Superoxide production in zymosan-stimulated phagocytic leucocytes was also increased by sGnRH in a dose-related manner from 0.01 to 100 nM. There was no significant effect of sGnRH on mRNA levels of growth hormone (GH) expressed in trout phagocytic leucocytes. Immunoneutralization of GH by addition of anti-salmon GH serum into the medium could not block the stimulatory effect of sGnRH on superoxide production. These results indicate that GnRH stimulates phagocytosis in fish leucocytes through a GnRH-receptor-dependent pathway, and that the effect of GnRH is not mediated through paracrine GH in leucocytes.  相似文献   

17.
To clarify the possible function of gonadotropin-releasing hormone (GnRH) in the brain of a pleuronectiform fish, the barfin flounder Verasper moseri, the distribution of three forms of GnRH in various areas of the brain was examined by radioimmunoassay, and the localization of GnRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary was determined by immunocytochemistry. The dominant form in the pituitary was seabream GnRH (sbGnRH), levels of which were much higher than those of salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). In contrast, sbGnRH levels were extremely low in all other brain areas examined. Levels of sGnRH and cGnRH-II were high in the anterior and posterior part of the brain, respectively. sbGnRH-ir cell bodies were located in the preoptic area, whereas sbGnRH-ir fibers were localized mainly in the preoptic area-hypothalamus-pituitary and formed a distinctive bundle of axons projecting to the pituitary. sGnRH-ir cell bodies were located in the ventromedial part of the rostral olfactory bulbs and in the terminal nerve ganglion (the transitional area between the olfactory bulb and the telencephalon). cGnRH-II-ir cell bodies were localized to the midbrain tegmentum. sGnRH-ir and cGnRH-II-ir fibers were observed throughout the brain except in the pituitary gland. These results indicate that sbGnRH is responsible for the neural control of the reproductive endocrinology of the barfin flounder (hypothalamo-hypophysial system), and that sGnRH and cGnRH-II function as neurotransmitters or neuromodulators in the brain.  相似文献   

18.
19.
Three forms of GnRH, chicken (c) GnRH-II, salmon (s) and seabream (sb) GnRH, were immunologically characterized in the brain and pituitary of turbot by ELISA. cGnRH-II and sGnRH were detected in the brain, while sbGnRH and sGnRH (but not cGnRH-II) were detected in the pituitary. In females, the levels of cGnRH-II in the turbot brain extracts increased from May to July, concomitant with an increase in oocyte diameter. In the pituitary, sbGnRH was found to be the dominant form, with levels 100-600-fold those of sGnRH. Both sGnRH and sbGnRH in the pituitary showed variation during the spawning season; sbGnRH increased from May to July and correlated with the increase in oocyte diameter, while sGnRH decreased. The overall patterns were the same for male turbot, although levels were generally lower. These findings suggest that sbGnRH could be controlling reproduction in the turbot. However, the seasonal variation in sGnRH indicates a potential physiological role in turbot reproduction. This study gives the first immunological indications that sbGnRH is present in the pituitary of a pleuronectiform fish, and will provide the basis for further studies on the endocrine regulation of reproduction in flatfish.  相似文献   

20.
A steroidogenic tilapia gonadotropin (taGtH=LH) was purified from pituitaries of hybrid tilapia (Oreochromis niloticus x O. aureus) and a homologous RIA was established. This RIA enabled the study of the endocrine regulation of GtH release, the transduction pathways involved in its secretion and its profile during the spawning cycle. Discrepancies between steroid and taGtH peaks during the cycle led to the conclusion that an additional gonadotropin similar to salmonid FSH operates early in the cycle. In order to identify this hormone and to study the endocrine control of synthesis of all gonadotropin (GtH) subunits, a molecular approach was taken. The cDNA sequences and the entire gene sequences encoding the FSHbeta and LHbeta subunits, as well as an incomplete sequence of the glycoprotein hormone alpha subunit (GPalpha), were cloned. Salmon gonadotropin-releasing hormone (sGnRH) elevated mRNA steady-state levels of all three GtH subunits in cultured pituitary cells. Pituitary adenylate cyclase-activating polypeptide (PACAP) and neuropeptide Y (NPY) also stimulated the expression of these subunits and potentiated the effect of GnRH, except that NPY did not affect FSHbeta. The GnRH and NPY effects were found to be mediated mainly through protein kinase C (PKC), while protein kinase A (PKA) cascade was involved to a lesser extent. Mitogen-activated protein kinase (MAPK) cascade takes part in mediating GnRH effects, possibly via PKC. Testosterone (T) and estradiol (E2), but not 11-ketotestosterone (KT), are able to elevate GPalpha and LHbeta mRNAs in pituitary cells of early maturing or regressing males. Low levels of T exposure are associated with elevated FSHbeta mRNA in cells of mature fish, while higher levels suppress it, but elevate LHbeta mRNA. In vivo observations also showed the association of low T levels with increased FSHbeta mRNA and high T levels with elevated LHbeta mRNA. In accordance with these findings, analysis of LHbeta and FSHbeta 5' gene-flanking regions revealed on both gene promoters a GtH-specific element (GSE), half site estrogen response elements (ERE), cAMP response element (CRE) and AP1. In vitro experiments showed that recombinant human activin-A leads to higher levels of GPalpha, FSHbeta and LHbeta mRNAs in pituitary cell culture. Porcine inhibin marginally decreased the mRNA levels of GPalpha and FSHbeta, but at a low level (1 ng/ml) it stimulated that of LHbeta. These results shed some light on certain hypothalamic and gonadal hormones regulating the expression of GtH subunit genes in tilapia. In addition, they provide evidence for their differential regulation, and insight into their mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号