首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the high-affinity monocarboxylate transporter MCT2, heterologously expressed in Xenopus oocytes. In contrast to MCT1 and MCT4, transport activity of MCT2 was not altered by CAII. However, coexpression of CAIV with MCT2 resulted in a significant increase in MCT2 transport activity when the transporter was coexpressed with its associated ancillary protein GP70 (embigin). The CAIV-mediated augmentation of MCT2 activity was independent of the catalytic activity of the enzyme, as application of the CA-inhibitor ethoxyzolamide or coexpressing the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT2 transport activity. Furthermore, exchange of His-88, mediating an intramolecular H(+)-shuttle in CAIV, to alanine resulted only in a slight decrease in CAIV-mediated augmentation of MCT2 activity. The data suggest that extracellular membrane-bound CAIV, but not cytosolic CAII, augments transport activity of MCT2 in a non-catalytic manner, possibly by facilitating a proton pathway other than His-88.  相似文献   

2.
The purpose of this study was to investigate the effect of endurance training (10 weeks) on previously reported alterations of lactate exchange in obese Zucker fa/fa rats. We used sarcolemmal vesicles to measure lactate transport capacity in control sedentary rats, Zucker (fa/fa), and endurance trained Zucker (fa/fa) rats. Monocarboxylate transporter (MCT) 1 and 4 content was measured in sarcolemmal vesicles and skeletal muscle. Training increased citrate synthase activity in soleus and in red tibialis anterior, and improved insulin sensitivity measured by intraperitoneal glucose tolerance test. Endurance training increased lactate influx in sarcolemmal vesicles at 1 mM of external lactate concentration and increased MCT1 expression on sarcolemmal vesicles. Furthermore, muscular lactate level was significantly decreased after training in red tibialis anterior and extensor digitorum longus. This study shows that endurance training improves impairment of lactate transport capacity that is found in insulin resistance state like obesity and type 2 diabetes.  相似文献   

3.
The expression of monocarboxylate transporters MCT1, MCT2 and MCT4 in the rumen, small intestine and liver was examined in free-ranging and captive reindeer. In addition, expression of chaperone protein CD147, which is needed for the activity of MCT1 and MCT4, was studied in the rumen of suckling calves. Immunoblotting of cell membrane proteins showed the expression of MCT1 and MCT4, but not that of MCT2 in the rumen of reindeer. In free-ranging reindeer the amount of MCT1 was higher than in the captive ones (P<0.01). Developing rumen of suckling calves expressed MCT1 and MCT4 and positive correlation was found between MCT1 and CD147. Both MCT1 and CD147 correlated also with age in calves less than 10 days. In the small intestine all the isoforms studied were expressed, but the amounts were lower than in the rumen (P<0.05). In the liver MCT1 and MCT2 were found while MCT4 was nearly undetectable. The expression of MCT isoforms in the rumen and small intestine reflects the site of absorption and concentrations of short chain fatty acids (SCFA). In the liver the expression of high affinity transporters, MCT1 and MCT2, is in accordance with almost complete uptake of propionate from portal blood.  相似文献   

4.
Monocarboxylate transporter 4 (MCT4) is a pH-dependent bi-directional lactate transporter. Transport of lactate via MCT4 is increased by extracellular acidification. We investigated the critical histidine residue involved in pH regulation of MCT4 function. Transport of lactate via MCT4 was measured by using a Xenopus laevis oocyte expression system. MCT4-mediated lactate transport was inhibited by Zn2+ in a pH physiological condition but not in an acidic condition. The histidine modifier DEPC (diethyl pyrocarbonate) reduced MCT4 activity but did not completely inactivate MCT4. After treatment with DEPC, pH regulation of MCT4 function was completely knocked out. Inhibitory effects of DEPC were reversed by hydroxylamine and suppressed in the presence of excess lactate and Zn2+. Therefore, we performed an experiment in which the extracellular histidine residue was replaced with alanine. Consequently, the pH regulation of MCT4-H382A function was also knocked out. Our findings demonstrate that the histidine residue His382 in the extracellular loop of the transporter is essential for pH regulation of MCT4-mediated substrate transport activity.  相似文献   

5.
The effects of endurance training on lactate transport capacity remain controversial. This study examined whether endurance training 1) alters lactate transport capacity, 2) can protect against exhaustive exercise-induced lactate transport alteration, and 3) can modify heart and oxidative muscle monocarboxylate transporter 1 (MCT1) content. Forty male Wistar rats were divided into control (C), trained (T), exhaustively exercised (E), and trained and exercised (TE) groups. Rats in the T and TE groups ran on a treadmill (1 h/day, 5 days/wk at 25 m/min, 10% incline) for 5 wk; C and E were familiarized with the exercise task for 5 min/day. Before being killed, E and TE rats underwent exhaustive exercise (25 m/min, 10% grade), which lasted 80 and 204 min, respectively (P < 0.05). Although lactate transport measurements (zero-trans) did not differ between groups C and T, both E and TE groups presented an apparent loss of protein saturation properties. In the trained groups, MCT1 content increased in soleus (+28% for T and +26% for TE; P < 0.05) and heart muscle (+36% for T and +33% for TE; P < 0.05). Moreover, despite the metabolic adaptations typically observed after endurance training, we also noted increased lipid peroxidation byproducts after exhaustive exercise. We concluded that 1) endurance training does not alter lactate transport capacity, 2) exhaustive exercise-induced lactate transport alteration is not prevented by training despite increased MCT1 content, and 3) exercise-induced oxidative stress may enhance the passive diffusion responsible for the apparent loss of saturation properties, possibly masking lactate transport regulation.  相似文献   

6.
We hypothesized that a part of therapeutic effects of endurance training on insulin resistance is mediated by increase in cardiac and skeletal muscle mitochondrial lactate transporter, monocarboxylate transporter 1 (MCT1). Therefore, we examined the effect of 7 weeks endurance training on the mRNA and protein expression of MCT1 and MCT4 and their chaperon, CD147, on both sarcolemmal and mitochondrial membrane, separately, in healthy and type 2 diabetic rats. Diabetes was induced by injection of low dose of streptozotocin and feeding with high-fat diet. Insulin resistance was confirmed by homeostasis model assessment-estimated insulin resistance index and accuracy of two membranes separation was confirmed by negative control markers (glucose transporter 1 and cytochrome c oxidase. Real-time PCR and western blotting were used for mRNA and protein expression, respectively. Diabetes dramatically reduced MCT1 and MCT4 mRNA and their expression on sarcolemmal membrane whereas the reduction in MCT1 expression was less in mitochondrial membrane. Training increased the MCT1 mRNA and protein expression in both membranes and decreased insulin resistance as an adaptive consequence. In both tissues increase in CD147 mRNA was only parallel to MCT1 expression. The response of MCT1 on sarcolemmal and mitochondrial membranes was different between cardiac and skeletal muscles which indicate that intracellular lactate kinetic is tissue specific that allows a tissue to coordinate whole organism metabolism.  相似文献   

7.
8.
Grollman EF  Philp NJ  McPhie P  Ward RD  Sauer B 《Biochemistry》2000,39(31):9351-9357
Monocarboxylate transporters (MCTs) comprise a group of highly homologous proteins that reside in the plasma membrane of almost all cells and which mediate the 1:1 electroneutral transport of a proton and a lactate ion. The isoform MCT3 is restricted to the basal membrane of the retinal pigment epithelium where it regulates lactate levels in the neural retina. Kinetic analysis of this transporter poses formidable difficulties due to the presence of multiple lactate transporters and their complex interaction with MCTs in adjacent cells. To circumvent these problems, we expressed both the MCT3 gene and a green fluorescent protein-tagged MCT3 construct in Saccharomyces cerevisiae. Since L-lactate metabolism in yeast depends on the CYB2 gene, we disrupted CYB2 to study the MCT3 transporter activity free from the complications of metabolism. Under these conditions L-lactate uptake varied inversely with pH, greater uptake being associated with lower pH. Whereas the V(max) was invariant, the K(m) increased severalfold as the pH rose from 6 to 8. In addition, MCT3 was highly resistant to a number of "classical" inhibitors of lactate transport. Last, studies with diethyl pyrocarbonate and p-chloromercuribenzenesulfonate set limitations on the locus of potential residues involved in the critical site of lactate translocation.  相似文献   

9.
Transport of lactate, pyruvate, and the ketone bodies, acetoacetate and beta-hydroxybutyrate, is mediated in many mammalian cells by the monocarboxylate transporter MCT1. To be accepted as a substrate, a carboxyl group and an unpolar side chain are necessary. Site-directed mutagenesis of the rat MCT1 was used to identify residues which are involved in substrate recognition. Helices 8 and 10 but not helix 9 were found to contain critical residues for substrate recognition. Mutation of arginine 306 to threonine in helix 8 resulted in strongly reduced transport activity. Concomitantly, saturable transport was transformed into a nonsaturable dependence of transport activity on lactate concentration, suggesting that binding of the substrate was strongly impaired. Furthermore, proton translocation in the mutant was partially uncoupled from monocarboxylate transport. Mutation of phenylalanine 360 to cysteine in helix 10 resulted in an altered substrate side chain recognition. In contrast to the wild-type transporter, monocarboxylates with more bulky and polar side chains were recognized by the mutated MCT1. Mutation of selected residues in helix 9 and helix 11 (C336A, H337Q, and E391Q) did not cause alterations of the transport properties of MCT1. It is suggested that substrate binding occurs in the carboxy-terminal half of MCT1 and that helices 8 and 10 are involved in the recognition of different parts of the substrate.  相似文献   

10.
This study investigated the effects of high-intensity training, with or without induced metabolic alkalosis, on lactate transporter (MCT1 and MCT4) and sodium bicarbonate cotransporter (NBC) content in rat skeletal muscles. Male Wistar rats performed high-intensity training on a treadmill 5 times/wk for 5 wk, receiving either sodium bicarbonate (ALK-T) or a placebo (PLA-T) prior to each training session, and were compared with a group of control rats (CON). MCT1, MCT4, and NBC content was measured by Western blotting in soleus and extensor digitorum longus (EDL) skeletal muscles. Citrate synthase (CS) and phosphofructokinase (PFK) activities and muscle buffer capacity (betam) were also evaluated. Following training, CS and PFK activities were significantly higher in the soleus only (P < 0.05), whereas betam was significantly higher in both soleus and EDL (P < 0.05). MCT1 (PLA-T: 30%; ALK-T: 23%) and NBC contents (PLA-T: 85%; ALK-T: 60%) increased significantly only in the soleus following training (P < 0.01). MCT4 content in the soleus was significantly greater in ALK-T (115%) but not PLA-T compared with CON. There was no significant change in protein content in the EDL. Finally, NBC content was related only to MCT1 content in soleus (r = 0.50, P < 0.01). In conclusion, these results suggest that MCT1, MCT4, and NBC undergo fiber-specific adaptive changes in response to high-intensity training and that induced alkalosis has a positive effect on training-induced changes in MCT4 content. The correlation between MCT1 and NBC expression suggests that lactate transport may be facilitated by NBC in oxidative skeletal muscle, which may in turn favor better muscle pH regulation.  相似文献   

11.
Infection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice. Pervanadate treatment in vitro increased band-3 tyrosine phosphorylation that was accompanied by decreased RBC deformability and anion exchange activity. Following sepsis, band-3 tyrosine phosphorylation in whole RBC ghosts as well as in cytoskeleton-bound or soluble RBC protein fractions were elevated as compared to controls. Although anion exchange activity was similar in RBCs from septic and control animals, band-3 interaction with eosin-5-maleimide (EMA), which binds to band-3 lysine moieties, was increased in cells from septic animals as compared to controls, indicating that sepsis altered band 3 organization within the RBC membrane. Since glucose-6-phosphate dehydrogenase is a major antioxidant enzyme in RBC, in order to assess the potential role of oxidative stress in band-3 tyrosine phosphorylation, sepsis-induced RBC responses were also compared between WT and (G6PD) mutant animals (20% of normal G6PD activity). Band-3 membrane content and EMA staining were elevated in G6PD mutant mice compared to WT under control non-septic conditions. Following sepsis, G6PD mutant animals showed lessened responses in band-3 tyrosine phosphorylation and EMA staining compared to WT. RBC anion exchange activity was similar between mutant and WT animals under all tested conditions. In summary, these studies indicate that sepsis results in elevated band-3 tyrosine phosphorylation and alters band-3 membrane organization without grossly affecting RBC anion exchange activity. The observations also suggest that factors other than oxidative stress are responsible for the sepsis-induced increase in RBC band-3 tyrosine phosphorylation.  相似文献   

12.
A family of specific carrier protein designated as monocarboxylate transporter (MCT) has been known to transport the lactate and other moncarboxylates in mammalian cells. We hypothesized the presence of serum protein in human circulation that may works as a lactate carrier and that biochemical structure would possesses common structure with MCT on the plasma membrane.Immunoblot analysis with an anti-MCT1 polyclonal antibody suggested the presence of a 44-kDa protein in human circulation and N-terminal amino acid sequencing exhibited a stretch of 14 amino acids which is completely identical to MCT1. The unbound fractions from the GST-MCT1 fusion protein-immobilized glutathione sepharose 4B column demonstrated that lactic acid concentration began to increase with one fraction delay compared to Sepharose 4B and GST-immobilized column. When lactic acid was washed away with PBS, lactic acid concentrations in the effuluent constantly decreased in both Sepharose 4B and GST-immobilized column. However, GST-MCT1-immobilized column showed specific convex curve from fraction approximately 3 mM of lactate and demonstrated wash out delay compared to Sepharose 4B and GST-immobilized column.These observations demonstrated biochemical and immunological similarities between a 44-kDa protein purified from human serum and MCT1 present on the plasma membrane. The studies on MCT1-fusion protein suggested possible functional properties of a 44-kDa protein as a lactate buffer by holding and unhand a lactate according to the lactate concentration in human blood. The experiments described herein have suggested the existence of lactate carrier in human circulation which is free from plasma membrane.  相似文献   

13.
The present study investigated whether muscular monocarboxylate transporter (MCT) 1 and 4 contents are related to the blood lactate removal after supramaximal exercise, fatigue indexes measured during different supramaximal exercises, and muscle oxidative parameters in 15 humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (gamma(2)), which denoted the blood lactate removal ability. Fatigue indexes were calculated during 1-min all-out (FI(AO)) and repeated 10-s (FI(Sprint)) cycling sprints. Biopsies were taken from the vastus lateralis muscle. MCT1 and MCT4 contents were quantified by Western blots, and maximal muscle oxidative capacity (V(max)) was evaluated with pyruvate + malate and glutamate + malate as substrates. The results showed that the blood lactate removal ability (i.e., gamma(2)) after a 1-min all-out test was significantly related to MCT1 content (r = 0.70, P < 0.01) but not to MCT4 (r = 0.50, P > 0.05). However, greater MCT1 and MCT4 contents were negatively related with a reduction of blood lactate concentration at the end of 1-min all-out exercise (r = -0.56, and r = -0.61, P < 0.05, respectively). Among skeletal muscle oxidative indexes, we only found a relationship between MCT1 and glutamate + malate V(max) (r = 0.63, P < 0.05). Furthermore, MCT1 content, but not MCT4, was inversely related to FI(AO) (r = -0.54, P < 0.05) and FI(Sprint) (r = -0.58, P < 0.05). We concluded that skeletal muscle MCT1 expression was associated with the velocity constant of net blood lactate removal after a 1-min all-out test and with the fatigue indexes. It is proposed that MCT1 expression may be important for blood lactate removal after supramaximal exercise based on the existence of lactate shuttles and, in turn, in favor of a better tolerance to muscle fatigue.  相似文献   

14.
The swimbladder volume is regulated by O(2) transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the "Root effect." While O(2) generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H(+)/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b.  相似文献   

15.
The physical and physiological behavior of sickle cell trait carriers (AS) is somewhat equivocal under strenuous conditions, although this genetic abnormality is generally considered to be a benign disorder. The occurrence of incidents and severe injuries in AS during exercise might be explained, in part, by the lactic acidosis due to a greater lactate influx into AS red blood cells (RBCs). In the present study, the RBC lactate transport activity via the different pathways was compared between AS and individuals with normal hemoglobin (AA). Sixteen Caribbean students, nine AS and seven AA, performed a progressive and maximal exercise test to determine maximal oxygen consumption. Blood samples were obtained at rest to assess haematological parameters and RBC lactate transport activity. Lactate influxes [total lactate influx and monocarboxylate transporter (MCT-1)-mediated lactate influx] into erythrocytes were measured at four external [14C]-labeled lactate concentrations (1.6, 8.1, 41, and 81.1 mM). The two groups had similar maximal oxygen consumption. Total lactate influx and lactate influx via the MCT-1 pathway were significantly higher in AS compared with AA at 1.6, 41, and 81.1 mM. The maximal lactate transport capacity for MCT-1 was higher in AS than in AA. Although AS and AA had the same maximal aerobic physical fitness, the RBCs from the sickle cell trait carriers took up more lactate at low and high concentrations than the RBCs from AA individuals. The higher MCT-1 maximal lactate transport capacity found in AS suggests greater content or greater activity of MCT-1 in AS RBC membranes.  相似文献   

16.
Carbonic anhydrase (CA) is a ubiquitous enzyme catalyzing the equilibration of carbon dioxide, protons, and bicarbonate. For several acid/base-coupled membrane carriers it has been shown that the catalytic activity of CA supports transport activity, an interaction coined "transport metabolon." We have reported that CA isoform II (CAII) enhances lactate transport activity of the monocarboxylate transporter isoform I (MCT1) expressed in Xenopus oocytes, which does not require CAII catalytic activity (Becker, H. M., Fecher-Trost, C., Hirnet, D., Sültemeyer, D., and Deitmer, J. W. (2005) J. Biol. Chem. 280, 39882-39889 ). Coexpression of MCT1 with either wild type CAII or the catalytically inactive mutant CAII-V143Y similarly enhanced MCT1 activity, although injection of CAI or coexpression of an N-terminal mutant of CAII had no effect on MCT1 transport activity, demonstrating a specific, nonenzymatic action of CAII on lactate transport via MCT1. If the H(+) gradient was set to dominate the rate of lactate transport by applying low concentrations of lactate at a high H(+) concentration, the effect of CAII was largest. We tested the hypothesis of whether CAII helps to shuttle H(+) along the inner face of the cell membrane by measuring the pH change with fluorescent dye in different areas of interest during focal lactate application. Intracellular pH shifts decayed from the focus of lactate application to more distant sites much less when CAII had been injected. We present a hypothetical model in which the effective movement of H(+) into the bulk cytosol is increased by CAII, thus slowing the dissipation of the H(+) gradient across the cell membrane, which drives MCT1 activity.  相似文献   

17.
Lactate is formed and utilized continuously under fully aerobic conditions. Lactate is oxidized actively at all times, especially during exercise. Family of monocarboxylate transport proteins (MCTs) that are differentially expressed in cells and tissues accomplishes the facilitated transport of lactate across membranes. Previously we reported that there is MCT1 in blood circulation. We also reported the pressure stress stimulated cell proliferation in aortic smooth muscle cells (HASMC). In this experiment we attempted to prove the existence of MCT1 in HASMC and to clarify the effect of pressure stress on MCT1 localization in HASMC. We determined succinate dehydrogenase (SDH) activity as a marker of energy metabolism in cells. SDH activity was increased by pressure stress. Lactate enhanced the SDH activity under pressure stress (160 mmHg for 3 h) as dose dependent manner. On the other hand, lactate excretion was suppressed by the addition of lactate. We could detect MCT1 in the cytosolic and the membrane fractions of HASMC. The pressure stress increased MCT1 in the membrane fraction in the presence of extracellular lactate. In summary, we proved the existence of MCT1 in HASMC. Pressure stress changed the localization of MCT1. The increased membranous MCT1 may transport lactate for energy metabolism in cells.  相似文献   

18.
Two lactate/proton cotransporter isoforms (monocarboxylate transporters, MCT1 and MCT4) are present in the plasma (sarcolemmal) membranes of skeletal muscle. Both isoforms are symports and are involved in both muscle pH and lactate regulation. Accordingly, sarcolemmal MCT isoform expression may play an important role in exercise performance. Acute exercise alters human MCT content, within the first 24 h from the onset of exercise. The regulation of MCT protein expression is complex after acute exercise, since there is not a simple concordance between changes in mRNA abundance and protein levels. In general, exercise produces greater increases in MCT1 than in MCT4 content. Chronic exercise also affects MCT1 and MCT4 content, regardless of the initial fitness of subjects. On the basis of cross-sectional studies, intensity would appear to be the most important factor regulating exercise-induced changes in MCT content. Regulation of skeletal muscle MCT1 and MCT4 content by a variety of stimuli inducing an elevation of lactate level (exercise, hypoxia, nutrition, metabolic perturbations) has been demonstrated. Dissociation between the regulation of MCT content and lactate transport activity has been reported in a number of studies, and changes in MCT content are more common in response to contractile activity, whereas changes in lactate transport capacity typically occur in response to changes in metabolic pathways. Muscle MCT expression is involved in, but is not the sole determinant of, muscle H(+) and lactate anion exchange during physical activity.  相似文献   

19.
20.
Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3. CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号