首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the formation of the phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP(2)), which is implicated in many cellular processes. The Rho GTPases, RhoA and Rac1, have been shown previously to activate PIP5K and to bind PIP5K. Three type I PIP5K isoforms (Ialpha,Ibeta, and Igamma) have been identified; however, it is unclear whether these isoforms are differentially or even sequentially regulated by Rho GTPases. Here we show that RhoA and Rac1, as well as Cdc42, but not the Ras-like GTPases, RalA and Rap1A, markedly stimulate PIP(2) synthesis by all three PIP5K isoforms expressed in human embryonic kidney 293 cells, both in vitro and in vivo. RhoA-stimulated PIP(2) synthesis by the PIP5K isoforms was mediated by the RhoA effector, Rho-kinase. Stimulation of PIP5K isoforms by Rac1 and Cdc42 was apparently independent of and additive with RhoA- and Rho-kinase, as shown by studies with C3 transferase and Rho-kinase mutants. RhoA, and to a lesser extent Rac1, but not Cdc42, interacted in a nucleotide-independent form with all three PIP5K isoforms. Binding of PIP5K isoforms to GTP-bound, but not GDP-bound, RhoA could be displaced by Rho-kinase, suggesting a direct and constitutive PIP5K-Rho GTPase binding, which, however, does not trigger PIP5K activation. In summary, our findings indicate that synthesis of PIP(2) by the three PIP5K isoforms is controlled by RhoA, acting via Rho-kinase, as well as Rac1 and Cdc42, implicating that regulation of PIP(2) synthesis has a central position in signaling by these three Rho GTPases.  相似文献   

2.
Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation.  相似文献   

3.
A novel role for RhoGDI as an inhibitor of GAP proteins.   总被引:16,自引:3,他引:13       下载免费PDF全文
J F Hancock  A Hall 《The EMBO journal》1993,12(5):1915-1921
RhoGDI inhibits guanine nucleotide dissociation from post-translationally processed Rho and Rac proteins but its biochemical role in vivo is unknown. We show here that N-terminal effector site mutations in the Rac protein do not compromise its interaction with RhoGDI and that, whilst geranylgeranylation and -AAX proteolysis of the C-terminal CAAX motif of Rac1 and RhoA are required for efficient interaction with RhoGDI, methylesterification of the C-terminal cysteine residue is not required. In vitro, RhoGDI can form stable complexes with Rho and Rac proteins in both the GTP and GDP bound states. Furthermore the Rac-GTP--RhoGDI complex is resistent to the action of recombinant RhoGAP and recombinant BCR. Thus GDI, by complexing with Rac-GTP and preventing GAP stimulated GTP hydrolysis, may allow transit of the activated form of the Rac protein between physically separated activator and effector proteins in the cell.  相似文献   

4.
Rho-like GTPases orchestrate distinct cytoskeletal changes in response to receptor stimulation. Invasion of T-lymphoma cells into a fibroblast monolayer is induced by Tiam1, an activator of the Rho-like GTPase Rac, and by constitutively active V12Rac1. Here we show that activated V12Cdc42 can also induce invasion of T-lymphoma cells. Activated RhoA potentiates invasion, but fails by itself to mimic Rac and Cdc42. However, invasion is inhibited by the Rho-inactivating C3 transferase. Thus, RhoA is required but not sufficient for invasion. Invasion of T-lymphoma cells is critically dependent on the presence of serum. Serum can be replaced by the serum-borne lipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) (10(-7)-10(-6) M), which act on distinct G protein-linked receptors to activate RhoA and phospholipase C (PLC)-Ca2+ signaling. LPA- and S1P-induced invasion is preceded by Rho-dependent F-actin redistribution and pseudopodia formation. However, expression of both V14RhoA and V12Rac1 does not bypass the LPA/S1P requirement for invasion, indicating involvement of an additional signaling pathway independent of RhoA. The PLC inhibitor U-73122, but not the inactive analog U-73343, abolishes invasion. Our results indicate that T-lymphoma invasion is driven by Tiam1/Rac or Cdc42 activation, and is dependent on LPA/S1P receptor-mediated RhoA and PLC signaling pathways which lead to pseudopod formation and enhanced infiltration.  相似文献   

5.
The Rho GDP dissociation inhibitor (GDI) is an ubiquitously expressed regulatory protein involved in the cycling of Rho proteins between membrane-bound and soluble forms. Here, we characterized the Rho solubilization activity of a glutathione S-transferase (GST) - GDI fusion protein in a cell-free system derived from rat kidney. Addition of GST-GDI to kidney brush border membranes resulted in the specific release of Cdc42 and RhoA from the membranes, while RhoB and Ras were not extracted. The release of Cdc42 and RhoA by GST-GDI was dose dependent and saturable with about 50% of both RhoA and Cdc42 extracted. The unextracted Rho proteins were tightly bound to membranes and could not be solubilized by repeated GST-GDI treatment. These results demonstrated that kidney brush border membranes contained two populations of RhoA and Cdc42. Furthermore, the GST-GDI solubilizing activity on membrane-bound Cdc42 and RhoA was abolished at physiological conditions of salt and temperature in all tissues examined. When using bead-immobilized GST-GDI, KCl did not reduced the binding of Rho proteins. However, washing brush border membranes with KCl prior treatment by GST-GDI inhibited the extraction of Rho proteins. Taken together, these results suggest that the binding of GDI to membrane-bound Cdc42 and RhoA occurs easily under physiological ionic strength conditions, but a complementary factor is required to extract these proteins from membranes. These observations suggest that the shuttling activity of GDI upon Rho proteins could be normally downregulated under physiological conditions.  相似文献   

6.
The heterotrimeric G-protein G(13) mediates the formation of primitive endoderm from mouse P19 embryonal carcinoma cells in response to retinoic acid, signaling to the level of activation of c-Jun N-terminal kinase. The signal linkage map from MEKK1/MEKK4 to MEK1/MKK4 to JNK is obligate in this G alpha(13)-mediated pathway, whereas that between G alpha(13) and MEKKs is not known. The overall pathway to primitive endoderm formation was shown to be inhibited by treatment with Clostridium botulinum C3 exotoxin, a specific inactivator of RhoA family members. Constitutively active G alpha(13) was found to activate RhoA as well as Cdc42 and Rac1 in these cells. Although constitutively active Cdc42, Rac1, and RhoA all can activate JNK1, only the RhoA mutant was able to promote formation of primitive endoderm, mimicking expression of the constitutively activated G alpha(13). Expression of the constitutively active mutant form of p115RhoGEF (guanine nucleotide exchange factor) was found to activate RhoA and JNK1 activities. Expression of the dominant negative p115RhoGEF was able to inhibit activation of both RhoA and JNK1 in response to either retinoic acid or the expression of a constitutively activated mutant of G alpha(13). Expression of the dominant negative mutants of RhoA as well as those of either Cdc42 or Rac1, but not Ras, attenuated G alpha(13)-stimulated as well as retinoic acid-stimulated activation of all three of these small molecular weight GTPases, suggesting complex interrelationships among the three GTPases in this pathway. The formation of primitive endoderm in response to retinoic acid also could be blocked by expression of dominant negative mutants of RhoA, Cdc42, or Rac1. Thus, the signal propagated from G alpha(13) to JNK requires activation of p115RhoGEF cascades, including p115RhoGEF itself, RhoA, Cdc42, and Rac1. In a concerted effort, RhoA in tandem with Cdc42 and Rac1 activates the MEKK1/4, MEK1/MKK4, and JNK cascade, thereby stimulating formation of primitive endoderm.  相似文献   

7.
Rho family GTPases are important regulators of the actin cytoskeleton. Activation of these proteins can be promoted by guanine nucleotide exchange factors containing Dbl and Pleckstrin homology domains resulting in membrane insertion of a Rho family member, whereas the inactive GDP-bound form is sequestered primarily in the cytoplasm, bound to the guanosine dissociation inhibitor RhoGDI. Dominant interfering variants of Rac1, but not Cdc42, inhibit beta1 integrin-promoted uptake of Yersinia pseudotuberculosis. Unexpectedly, we found that the Rac1(W56F) guanine nucleotide exchange factors specificity switch mutant blocked invasin-promoted uptake as well as Cdc42-dependent uptake of enteropathogenic Escherichia coli. Fluorescence resonance energy transfer experiments demonstrated that Rac1(W56F) retained the ability to be loaded with GTP, bind a downstream effector, and interact with RhoGDI. Mutational analyses of intragenic suppressors and coexpression studies demonstrated that binding of the Rac1(W56F) mutant to RhoGDI appeared to play a role in the inhibition of uptake. As RhoGDI inhibits RhoA, overactivation of RhoA may account for the uptake interference caused by Rac1(W56F). Consistent with this model, a dominant interfering form of RhoA restored significant uptake in the presence of the Rac1(W56F) mutant but had no effect on another interfering Rac1 form. Furthermore, the cellular GTP-RhoA level was elevated by the presence of Rac1(W56F) mutant protein. These data are consistent with the proposition that Rac1(W56F) blocks invasin-promoted uptake by preventing RhoGDI from inactivating RhoA. We conclude that RhoGDI allows cross-talk between Rho family members that promote potentially antagonistic processes, and disruption of this cross-talk can interfere with invasin-promoted uptake.  相似文献   

8.
RhoA-mediated Ca2+ sensitization in erectile function   总被引:2,自引:0,他引:2  
A Rho-kinase inhibitor increases corpus cavernosum (CC) pressure in an in vivo rat model (Chitaley, K., Wingard, C. J., Webb, R. C., Branam, H., Stopper, V. S., Lewis, R. W., and Mills, T. M. (2001) Nat. Med. 7, 119-122) suggesting that Rho-mediated Ca(2+) sensitization of CC smooth muscle maintains the flaccid (contracted) state. We directly demonstrate Ca(2+) sensitization of permeabilized rabbit and human CC and identify a highly expressed molecular component of this pathway. Ca(2+) sensitization of force induced by endothelin or GTPgammaS was significantly greater in CC than in rabbit ileum smooth muscle and was accompanied by a 17-fold higher RhoA content. Pull-down assays with the RhoA binding domain of mDia showed the high RhoA content of CC to be available for activation by GTPgammaS. Ca(2+) sensitization induced by endothelin, phenylephrine, or GTPgammaS was completely relaxed by the Rho kinase inhibitor Y-27632. Human and rabbit CC both express the phosphatase inhibitor CPI-17, the myosin phosphatase regulatory (MYPT-1) and catalytic (PP1delta) subunits, and two isoforms of Rho kinase. We suggest that high expression of RhoA contributes, through RhoA-mediated Ca(2+) sensitization, to the flaccid state of CC that can be reversed by a water-soluble, orally active Rho kinase inhibitor suitable for therapy of erectile dysfunction.  相似文献   

9.
The GDP/GTP exchange reaction of rho p21, a member of ras p21-related small GTP-binding protein superfamily, is regulated by two stimulatory GDP/GTP exchange proteins (GEPs), named smg GDS and rho GDS, and by one inhibitory GEP, named rho GDI. In bovine aortic smooth muscle, rho GDS and rho GDI were major GEPs for rho p21, and the rho GDI activity on the GDP/GTP exchange reaction of rho p21 was stronger than the rho GDS activity in their simultaneous presence. Moreover, in the crude cytosol, the GDP-bound form of rho p21 was complexed with rho GDI but not with rho GDS. These results, together with our recent finding that rho p21 is involved in the vasoconstrictor-induced Ca2+ sensitization of smooth muscle contraction, suggest that there is some mechanism to release the inhibitory action of rho GDI and to make rho p21 sensitive to the stimulatory action of rho GDS, eventually leading to the rho p21 activation, in the signaling pathways of the vasoconstrictor receptors in smooth muscle.  相似文献   

10.
Small G proteins of the Rho/Rac/Cdc42 family are associated with lipid membranes through their prenylated C termini. Alternatively, these proteins form soluble complexes with GDI proteins. To assess how this membrane partitioning influences the activation of Rac by guanine nucleotide exchange factors, GDP-to-GTP exchange reactions were performed in the presence of liposomes using different forms of Rac-GDP. We show that both non-prenylated Rac-GDP and the soluble complex between prenylated Rac-GDP and GDI are poorly activated by the Dbl homology-pleckstrin homology (DH-PH) domain of the exchange factor Tiam1, whereas prenylated Rac-GDP bound to liposomes is activated about 10 times more rapidly. Sedimentation experiments with liposomes reveal that the DH-PH region of Tiam1 forms, with nucleotide-free prenylated Rac, a membrane-bound complex from which GDI is excluded. Taken together, these experiments demonstrate that the dissociation of Rac-GDP from GDI and its translocation to membrane lipids favor DH-PH-catalyzed nucleotide exchange because the steric hindrance caused by GDI is relieved and because the membrane environment favors functional interaction between the DH-PH domain and the small G protein.  相似文献   

11.
Several guanine nucleotide exchange factors (GEFs) for Rho-GTPases have been identified, all of them containing a Dbl homology (DH) and pleckstrin homology (PH) domain, but exhibiting different specificities to the Rho family members, Rho, Rac and Cdc42. We report here that KIAA0380, a protein with a tandem DH/PH domain, an amino-terminal PDZ domain and a regulator of G protein signalling (RGS) homology domain, is a specific GEF for RhoA, but not for Rac1 and Cdc42, as determined by GDP release, guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding and protein binding assays. When expressed in J82 cells, DH/PH domain-containing forms of KIAA0380 induced actin stress fibers, whereas expression of the RGS homology domain prevented lysophosphatidic acid (LPA)-induced stress fiber formation.  相似文献   

12.
Thapar R  Karnoub AE  Campbell SL 《Biochemistry》2002,41(12):3875-3883
A 13 amino acid insertion that forms a short 3(10) helix between beta-strand 5 and alpha-helix 4 is a distinguishing feature among most members of the Rho family of GTPases, yet the precise role of this region in signal transduction is poorly understood. Previous in vivo functional studies have implicated the insert region of RhoA, Rac1, and Cdc42 to be important for cell transformation, regulation of the actin cytoskeleton, controlling DNA synthesis, and in the activation of downstream targets. In Rac1, our recent biological studies have suggested that the insert is important for SRF activation and the formation of lamellipodia but is dispensable for all other cellular functions of this protein. In the studies reported herein, we have characterized the effect of the insert deletion on Rac1 structure, thermodynamic stability, and the kinetics of nucleotide association. These in vitro studies help clarify biological data and provide further insights as to the role of this 13 amino acid region in modulating Rac1 function. The studies reveal that deletion of the insert has no effect on Rac1 structure and causes only a marginal (approximately 0.8 kcal/mol) decrease in the DeltaG(fold) of Rac1*GDP*Mg2+. The intrinsic rate of nucleotide dissociation of Rac1*Delta(ins) is decreased by about 1.5-fold compared to that of wild type, and a 3-fold increase in the GEF (Vav2)-mediated exchange rate is observed. In addition, deletion of the insert does not change the K(D) for the interaction of Rac1 with GDI, and similar to that previously observed for Cdc42, no inhibition of GDP dissociation is observed for the deletion mutant relative to that for the native protein. Taken together, the structural and biochemical studies reported here are consistent with our biological data reported previously and suggest that the most likely role of the insert region must be to serve as a binding interface for downstream effectors, particularly those important for actin regulation.  相似文献   

13.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

14.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

15.
The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway.  相似文献   

16.
Activation of Rho-family GTPases involves the removal of bound GDP and the subsequent loading of GTP, all catalyzed by guanine nucleotide exchange factors (GEFs) of the Dbl-family. Despite high sequence conservation among Rho GTPases, Dbl proteins possess a wide spectrum of discriminatory potentials for Rho-family members. To rationalize this specificity, we have determined crystal structures of the conserved, catalytic fragments (Dbl and pleckstrin homology domains) of the exchange factors intersectin and Dbs in complex with their cognate GTPases, Cdc42 and RhoA, respectively. Structure-based mutagenesis of intersectin and Dbs reveals the key determinants responsible for promoting exchange activity in Cdc42, Rac1 and RhoA. These findings provide critical insight into the structural features necessary for the proper pairing of Dbl-exchange factors with Rho GTPases and now allow for the detailed manipulation of signaling pathways mediated by these oncoproteins in vivo.  相似文献   

17.
GTPases of the Rho family are molecular switches that play an important role in a wide range of membrane-trafficking processes including neurotransmission and hormone release. We have previously demonstrated that RhoA and Cdc42 regulate calcium-dependent exocytosis in chromaffin cells by controlling actin dynamics, whereas Rac1 regulates lipid organisation. These findings raised the question of the upstream mechanism activating these GTPases during exocytosis. The guanine nucleotide exchange factors (GEFs) that catalyse the exchange of GDP for GTP are crucial elements regulating Rho signalling. Using an RNA interference approach, we have recently demonstrated that the GEFs Intersectin-1L and β-Pix, play essential roles in neuroendocrine exocytosis by controlling the activity of Cdc42 and Rac1, respectively. This review summarizes these results and discusses the functional importance of Rho GEFs in the exocytotic machinery in neuroendocrine cells.  相似文献   

18.
A polarity complex of PAR-3, PAR-6, and atypical protein kinase C (aPKC) functions in various cell polarization events. PAR-3 directly interacts with Tiam1/Taim2 (STEF), Rac1-specific guanine nucleotide exchange factors, and forms a complex with aPKC-PAR-6-Cdc42*GTP, leading to Rac1 activation. RhoA antagonizes Rac1 in certain types of cells. However, the relationship between RhoA and the PAR complex remains elusive. We found here that Rho-kinase/ROCK/ROK, the effector of RhoA, phosphorylated PAR-3 at Thr833 and thereby disrupted its interaction with aPKC and PAR-6, but not with Tiam2. Phosphorylated PAR-3 was observed in the leading edge, and in central and rear portions of migrating cells having front-rear polarity. Knockdown of PAR-3 by small interfering RNA (siRNA) impaired cell migration, front-rear polarization, and PAR-3-mediated Rac1 activation, which were recovered with siRNA-resistant PAR-3, but not with the phospho-mimic PAR-3 mutant. We propose that RhoA/Rho-kinase inhibits PAR complex formation through PAR-3 phosphorylation, resulting in Rac1 inactivation.  相似文献   

19.
Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI)alpha. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDI alpha in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDI alpha. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDI alpha binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDI alpha and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic.  相似文献   

20.
BACKGROUND: Cloned-out of library-2 (Cool-2)/PAK-interactive exchange factor (alpha-Pix) was identified through its ability to bind the Cdc42/Rac target p21-activated kinase (PAK) and has been implicated in certain forms of X-linked mental retardation as well as in growth factor- and chemoattractant-coupled signaling pathways. We recently found that the dimeric form of Cool-2 is a specific guanine nucleotide exchange factor (GEF) for Rac, whereas monomeric Cool-2 is a GEF for Cdc42 as well as Rac. However, unlike many GEFs, Cool-2 binds to activated forms of Cdc42 and Rac. Thus, we have investigated the functional consequences of these interactions. RESULTS: We show that the binding of activated Cdc42 to the Cool-2 dimer markedly enhances its ability to associate with GDP bound Rac1, resulting in a significant activation of Rac-GEF activity. While the Rac-specific GEF activity of Cool-2 is mediated through the Dbl homology (DH) domain from one monomer and the Pleckstrin homology domain from the other, activated Cdc42 interacts with the DH domain, most likely opposite the DH domain binding site for GDP bound Rac. Activated Rac also binds to Cool-2; however, it strongly inhibits the GEF activity of dimeric Cool-2. CONCLUSIONS: We provide evidence for novel mechanisms of allosteric regulation of the Rac-GEF activity of the Cool-2 dimer, involving stimulatory effects by Cdc42 and feedback inhibition by Rac. These findings demonstrate that by serving as a target for GTP bound Cdc42 and a GEF for Rac, Cool-2 mediates a GTPase cascade where the activation of Cdc42 is translated into the activation of Rac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号