首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated in the rodent hippocampus that rhythmic slow activity (theta) predominantly occurs during rapid eye movement (REM) sleep, while sharp waves and associated ripples occur mainly during non-REM sleep. However, evidence is lacking for correlates of sleep stages with electroencephalogram (EEG) in the hippocampus of monkeys. In the present study, we recorded hippocampal EEG from the dentate gyrus in monkeys overnight under conditions of polysomnographical monitoring. As result, the hippocampal EEG changed in a manner similar to that of the surface EEG: during wakefulness, the hippocampal EEG showed fast, desynchronized waves, which were partly replaced with slower waves of intermediate amplitudes during the shallow stages of non-REM sleep. During the deep stages of non-REM sleep, continuous, slower oscillations (0.5–8 Hz) with high amplitudes were predominant. During REM sleep, the hippocampal EEG again showed fast, desynchronized waves similar to those found during wakefulness. These results indicate that in the monkey, hippocampal rhythmic slow activity rarely occurs during REM sleep, which is in clear contrast to that of rodents. In addition, the increase in the slower oscillations of hippocampal EEG during non-REM sleep, which resembled that of the surface EEG, may at least partly reflect cortical inputs to the dentate gyrus during this behavioral state.  相似文献   

2.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor, has been shown to promote slow-wave sleep (SWS, non-REM sleep stages 3 and 4). Plasma levels of ghrelin are dependent on food intake and increase in sleeping subjects during the early part of the night. It is unknown whether sleep itself affects ghrelin levels or whether circadian networks are involved. Therefore, we studied the effect of sleep deprivation on nocturnal ghrelin secretion. In healthy male volunteers, plasma levels of ghrelin, cortisol, and human growth hormone (hGH) were measured during two experimental sessions of 24 h each: once when the subjects were allowed to sleep between 2300 and 0700 and once when they were kept awake throughout the night. During sleep, ghrelin levels increased during the early part of the night and decreased in the morning. This nocturnal increase was blunted during sleep deprivation, and ghrelin levels increased only slightly until the early morning. Ghrelin secretion during the first hours of sleep correlated positively with peak hGH concentrations. We conclude that the nocturnal increase in ghrelin levels is more likely to be caused by sleep-associated processes than by circadian influences. During the first hours of sleep, ghrelin might promote sleep-associated hGH secretion and contribute to the promotion of SWS.  相似文献   

3.
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.  相似文献   

4.
In mammals, aging is associated with immune senescense. To examine whether the sleep changes occurring during immune challenge are affected by age, we assessed sleep alterations induced by the administration of lipopolysaccharide (LPS) in young and middle-aged rats. During vehicle, the middle-aged rats exhibited less pre-rapid eye movement sleep (pre-REMS) as well as REMS, due to a smaller number and shorter duration of REMS episodes, than young rats. LPS elevated body temperature, increased non-REMS, and suppressed both pre-REMS and REMS in the young as well as in the middle-aged rats. However, in the young animals, LPS significantly enhanced slow-wave activity in the electroencephalogram (EEG) within non-REMS, reflecting an increase in sleep intensity. In contrast, LPS attenuated EEG power in most frequency bands in the older animals. This finding indicates age-related changes in the modulation of sleep by LPS.  相似文献   

5.
D G Hattan  P I Eacho 《Life sciences》1978,22(10):839-846
Direct electroencephalographic (EEG) and integrated electromyographic (EMG) recordings were analyzed for possible changes in the REM and non-REM sleep time in chronically implanted rats given 0, 1, 2, and 4 g/kg ethanol. REM and non-REM sleep were found, respectively, to be lessened and elevated in a dose-related manner. The degree of disruption of normal sleep-awake patterns was also found to correspond with blood-ethanol concentrations for the different doses of ethanol. These findings are discussed in relation to the influence of ethanol on the sleep of the human subject and the suggestion that the rat with chronic EEG and EMG electrodes may serve as a model for studying the degree of disruption of sleep upon chronic exposure to ethanol.  相似文献   

6.
The neuropeptides growth hormone (GH)-releasing hormone (GHRH) and corticotropin-releasing hormone (CRH) regulate sleep and nocturnal hormone secretion in a reciprocal fashion, at least in males. GHRH promotes sleep and GH and inhibits hypothalamo-pituitary-adrenocortical (HPA) hormones. CRH exerts opposite effects. In women, a sexual dimorphism was found because GHRH impairs sleep and stimulates HPA hormones. Sleep deprivation (SD) is the most powerful stimulus for inducing sleep. Studies in rodents show a key role of GHRH in sleep promotion after SD. The effects of GHRH and CRH on sleep-endocrine activity during the recovery night after SD are unknown. We compared sleep EEG, GH, and cortisol secretion between nights before and after 40 h of SD in 48 normal women and men aged 19-67 yr. During the recovery night, GHRH, CRH, or placebo were injected repetitively. After placebo during the recovery night, non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) increased and wakefulness decreased compared with the baseline night. After GHRH, the increase of NREMS and the decrease of wakefulness were more distinct than after placebo. Also, after CRH, NREMS increased higher than after placebo, and a positive correlation was found between age and the baseline-related increase of slow-wave sleep. REMS increased after placebo and after GHRH, but not after CRH. EEG spectral analysis showed increases in the lower frequencies and decreases in the higher frequencies during NREMS after each of the treatments. Cortisol and GH did not differ between baseline and recovery nights after placebo. After GHRH, GH increased and cortisol decreased. Cortisol increased after CRH. No sex differences were found in these changes. Our data suggest that GHRH and CRH augment NREMS promotion after SD. Marked differences appear to exist in peptidergic sleep regulation between spontaneous and recovery sleep.  相似文献   

7.
Recurrent sleep-related hypoxia occurs in common disorders such as obstructive sleep apnea (OSA). The marked changes in sleep after treatment suggest that stimuli associated with OSA (e.g., intermittent hypoxia) may significantly modulate sleep regulation. However, no studies have investigated the independent effects of intermittent sleep-related hypoxia on sleep regulation and recovery sleep after removal of intermittent hypoxia. Ten rats were implanted with telemetry units to record the electroencephalogram (EEG), neck electromyogram, and body temperature. After >7 days recovery, a computer algorithm detected sleep-wake states and triggered hypoxic stimuli (10% O2) or room air stimuli only during sleep for a 3-h period. Sleep-wake states were also recorded for a 3-h recovery period after the stimuli. Each rat received an average of 69.0 +/- 6.9 hypoxic stimuli during sleep. The non-rapid eye movement (non-REM) and rapid-eye-movement (REM) sleep episodes averaged 50.1 +/- 3.2 and 58.9 +/- 6.6 s, respectively, with the hypoxic stimuli, with 32.3 +/- 3.2 and 58.6 +/- 4.8 s of these periods being spent in hypoxia. Compared with results for room air controls, hypoxic stimuli led to increased wakefulness (P < 0.005), nonsignificant changes in non-REM sleep, and reduced REM sleep (P < 0.001). With hypoxic stimuli, wakefulness episodes were longer and more frequent, non-REM periods were shorter and more frequent, and REM episodes were shorter and less frequent (P < 0.015). Hypoxic stimuli also increased faster frequencies in the EEG (P < 0.005). These effects of hypoxic stimuli were reversed on return to room air. There was a rebound increase in REM sleep, increased slower non-REM EEG frequencies, and decreased wakefulness (P < 0.001). The results show that sleep-specific hypoxia leads to significant modulation of sleep-wake regulation both during and after application of the intermittent hypoxic stimuli. This study is the first to determine the independent effects of sleep-related hypoxia on sleep regulation that approximates OSA before and after treatment.  相似文献   

8.
In order to assess age effects upon the daytime level of alertness, both subjective and objective measures of alertness were obtained in 19 healthy elderly males (mean age 65 years) and 19 healthy young males (mean age 21 years). Subjects were recorded during a Multiple Sleep Latency Test (MSLT), administered at 5 different times of day (9 a.m., 12 a.m., 3 p.m., 6 p.m., 9 p.m.). Before each test, subjects filled out an alertness questionnaire. During the entire 20 minutes of each test electroencephalographic (EEG) recordings were made and transformed into 40 averaged spectra, one for each 30 s epoch. For the delta, theta, alpha, sigma and beta bands of the EEG 6 consecutive values were averaged to obtain 1 value per 3 minutes. On the basis of the visually guided detection of the first spindle, sleep onset was determined. The elderly subjects obtained a higher overall level of subjective alertness than the young subjects. No age effect was observed for sleep latency, which followed a U-shaped diurnal trend. Overall, the mean relative EEG energy values followed a diurnal trend that was the reverse of that for sleep latency. The mean relative delta EEG energy gradually increased, and the mean relative alpha EEG energy gradually decreased across the MSLT. For the young subjects the respective ranges of variation of these EEG bands were very similar, while for the elderly subjects the range of variation of the alpha values was less than half of that for the delta band. Apparently, alpha EEG activity during the wake-sleep transition does not simply covary with delta EEG activity. Moreover, age appears to have a significant effect upon the dynamics of alpha EEG activity during the wake-sleep transition.  相似文献   

9.
Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.  相似文献   

10.
1-hour exposure to ultra-short impulse low-frequency (6 Hz) superbroad band electromagnetic radiation altered cortical EEG in rats just after the exposure and increased the paradoxical sleep in rabbits within 16-22 hours following the radiation.  相似文献   

11.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

12.
Various growth factors (e.g., growth hormone-releasing hormone, acidic fibroblast growth factor, nerve growth factor, brain-derived neurotrophic factor, and interleukin-1) are implicated in sleep regulation. It is hypothesized that neuronal activity enhances the production of such growth factors, and they in turn form part of the sleep regulatory mechanism. Glial cell line-derived neurotrophic factor (GDNF) promotes development, differentiation, maintenance, and regeneration of neurons, and its production is induced by well-characterized sleep regulatory substances such as interleukin-1 and tumor necrosis factor. Therefore, we investigated whether GDNF would promote sleep. Twenty-six male Sprague-Dawley rats and 30 male New Zealand White rabbits were surgically implanted with electroencephalogram (EEG) and electromyogram (EMG; rats only) electrodes, a brain thermistor, and a lateral intracerebroventricular cannula. The animals were injected intracerebroventricularly with pyrogen-free saline and on a separate day with one of the following doses of GDNF: 5, 50, and 500 ng in rabbits and 50 and 500 ng in rats. The EEG, brain temperature, EMG (in rats), and motor activity (in rabbits) were recorded for 23 h after the intracerebroventricular injection. GDNF (500-ng dose) increased the time spent in nonrapid eye movement sleep in both rats and rabbits. Rapid eye movement sleep was not affected by the lower doses of GDNF but was inhibited in rabbits after the high dose. EEG slow-wave activity was not affected by GDNF. The current results provide further evidence that various growth factors are involved in sleep regulation.  相似文献   

13.
To investigate the effects of short-term sleep deprivation on the sleep pattern during pregnancy, cortical and hippocampal EEG and locomotor activity were recorded within 24-hours in a "disk-over-water" paradigm in 18 Wistar rats. Rats were adapted to experimental situation and were able to move across the rotating disk without falling in water. Then a polysomnogram was recorded for 3 sequential days in the control group 1 (n = 12) without disk rotation. On the next day non-pregnant rats (experimental group 1, n = 6) were subjected to the sleep deprivation procedure with a pre-set program of disk rotation from 11:00 to 14:00 during 3 sequential days. Other 6 rats (experimental group 2) were subjected to sleep deprivation on the 5-7th day of pregnancy. EEG and locomotor activity were also constantly recorded during the sleep deprivation procedure. In control group 2 (n = 6, without sleep deprivation), a polysomnogram was recorded on the 5-7th day of pregnancy. As compared to non-pregnant rats, sleep intensity of pregnant rats increased during the first hours after the deprivation, and a considerable rebound of REM sleep took place. Sleep pattern during the off-light 12 hours remained unchanged. The results suggest that homeostatic compensation of sleep deprivation effects in rats on the first week of pregnancy is more efficient than in control non-pregnant animals.  相似文献   

14.
15.
The typical declining trend of electroencephalographic (EEG) slow-wave activity (SWA) within a sleep period is represented in the two-process model of sleep regulation by an exponentially decaying process (Process S). The model has been further elaborated to simulate not only the global changes of SWA, but also the dynamics within non-rapid-eye-movement (non-REM) sleep episodes. In this new model, the initial intraepisodic buildup of SWA is determined by the combined action of an exponentially increasing process and a saturation process, whereas its fall at the end of an episode is due to an exponentially decreasing process. The global declining trend of SWA over consecutive episodes results from the monotonic decay of the intraepisodic saturation level. In contrast to Process S in the two-process model, this decay is not represented by an exponential function, but is proportional to the momentary level of SWA. REM sleep episodes are triggered by an external function. The model allows one to simulate the ultradian pattern of SWA for baseline nights as well as changes induced by a prolonged waking period, a daytime nap, a partial slow-wave sleep deprivation, or an antidepressant drug.  相似文献   

16.
Spectral analysis of heart rate variability (HRV) during overnight polygraphic recording was performed in 11 healthy subjects. The total spectrum power, power of the VLF, LF and HF spectral bands and the mean R-R were evaluated. Compared to Stage 2 and Stage 4 non-REM sleep, the total spectrum power was significantly higher in REM sleep and its value gradually increased in the course of each REM cycle. The value of the VLF component (reflects slow regulatory mechanisms, e.g. the renin-angiotensin system, thermoregulation) was significantly higher in REM sleep than in Stage 2 and Stage 4 of non-REM sleep. The LF spectral component (linked to the sympathetic modulation) was significantly higher in REM sleep than in Stage 2 and Stage 4 non-REM sleep. On the contrary, a power of the HF spectral band (related to parasympathetic activity) was significantly higher in Stage 2 and Stage 4 non-REM than in REM sleep. The LF/HF ratio, which reflects the sympathovagal balance, had its maximal value during REM sleep and a minimal value in synchronous sleep. The LF/HF ratio significantly increased during 5-min segments of Stage 2 non-REM sleep immediately preceding REM sleep compared to 5-min segments of Stage 2 non-REM sleep preceding the slow-wave sleep. This expresses the sympathovagal shift to sympathetic predominance occurring before the onset of REM sleep. A significant lengthening of the R-R interval during subsequent cycles of Stage 2 non-REM sleep was documented, which is probably related to the shift of sympathovagal balance to a prevailing parasympathetic influence in the course of sleep. This finding corresponds to a trend of a gradual decrease of the LF/HF ratio in subsequent cycles of Stage 2 non-REM sleep.  相似文献   

17.
经颅磁刺激对癫痫病灶脑电相关维数的影响   总被引:5,自引:0,他引:5  
利用脑功能指标——大鼠病灶区脑电的相关维数,研究低频经颅磁刺激对慢性颞叶癫痫大鼠脑功能改善的作用。对一组颞叶癫痫大鼠施予频率为0.5Hz、强度为0.4T、20次/日、连续一周的低频重复性经颅磁刺激(rTMS).在rTMS前后,分别测取颞叶癫痫大鼠责任病灶区皮层和海马区的脑电,重构时间延迟吸引子,用G-P算法估算反映对应脑区功能状态的相关维数。研究结果显示:施予适量的rTMS(0.4T、20次/日、连续一周),使颞叶癫痫大鼠海马和相应皮层脑电的相关维数比刺激前明显升高。研究表明适量的rTMS有抑制癫痫的作用。  相似文献   

18.
A computer program for the analysis of a sleep electroencephalogram (EEG) is presented. The method relies on two steps. First, a spectral analysis is performed for signals recorded from one or more electrode locations. Then, two EEG parameters are obtained by storing the spectral activity in a multidimensional space, whose dimension is reduced using principal component analysis (PCA) techniques. The main advantage of these parameters is in describing the process of sleep on a continuous scale as a function of time. Validation of the method was performed with the data collected from 16 subjects (8 young volunteers and 8 elderly insomniacs). Results snowed that the parameters correlate highly with the hypnograms established by conventional visual scoring. This signal parametrisation, however, offers more information regarding the time course of sleep, since small variations within individual sleep stages as well as smooth transitions between stages are assessed. Finally, the concurrent use of both parameters provides an original way of considering sleep as a dynamic process evolving cyclically in a single plane.  相似文献   

19.
In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation.  相似文献   

20.
Neocortical and hippocampal EEG activity was recorded in 23 rats subjected to the bilateral electrolytic lesions of the diencephalic zona incerta (ZI). The aim was to find whether damage to ZI can replicate insomnia and disturbances in cortical EEG desynchronization and hippocampal theta rhythm found after lesions of the lateral hypothalamic (LH) area. No effect of the ZI lesions on waking-sleep cycle was found. The amplitude and frequency of cortical waves and hippocampal theta rhythm during waking were changed only in some rats. These changes were small, short-lasting and bidirectional (toward and increase or decrease in different subjects). Both the amplitude and frequency of paradoxical sleep theta were depressed in part of animals. Thus the marked EEG changes after LH lesions can not be attributed to simultaneous damage of the adjacent subthalamic region. However, the ZI seems to constitute a part of a larger system regulating cortical arousal and hippocampal theta rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号