首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelium-dependent vasorelaxation in large vessels is mainly attributed to Nomega-nitro-L-arginine methyl ester (L-NAME)-sensitive endothelial nitric oxide (NO) synthase (eNOS)-derived NO production. Endothelium-derived hyperpolarizing factor (EDHF) is the component of endothelium-dependent relaxations that resists full blockade of NO synthases (NOS) and cyclooxygenases. H2O2 has been proposed as an EDHF in resistance vessels. In this work we propose that in mice aorta neuronal (n)NOS-derived H2O2 accounts for a large proportion of endothelium-dependent ACh-induced relaxation. In mice aorta rings, ACh-induced relaxation was inhibited by L-NAME and Nomega-nitro-L-arginine (L-NNA), two nonselective inhibitors of NOS, and attenuated by selective inhibition of nNOS with L-ArgNO2-L-Dbu-NH2 2TFA (L-ArgNO2-L-Dbu) and 1-(2-trifluoromethylphehyl)imidazole (TRIM). The relaxation induced by ACh was associated with enhanced H2O2 production in endothelial cells that was prevented by the addition of L-NAME, L-NNA, L-ArgNO2-L-Dbu, TRIM, and removal of the endothelium. The addition of catalase, an enzyme that degrades H2O2, reduced ACh-dependent relaxation and abolished ACh-induced H2O2 production. RT-PCR experiments showed the presence of mRNA for eNOS and nNOS but not inducible NOS in mice aorta. The constitutive expression of nNOS was confirmed by Western blot analysis in endothelium-containing vessels but not in endothelium-denuded vessels. Immunohistochemistry data confirmed the localization of nNOS in the vascular endothelium. Antisense knockdown of nNOS decreased both ACh-dependent relaxation and ACh-induced H2O2 production. Antisense knockdown of eNOS decreased ACh-induced relaxation but not H2O2 production. Residual relaxation in eNOS knockdown mouse aorta was further inhibited by the selective inhibition of nNOS with L-ArgNO2-L-Dbu. In conclusion, these results show that nNOS is constitutively expressed in the endothelium of mouse aorta and that nNOS-derived H2O2 is a major endothelium-dependent relaxing factor. Hence, in the mouse aorta, the effects of nonselective NOS inhibitors cannot be solely ascribed to NO release and action without considering the coparticipation of H2O2 in mediating vasodilatation.  相似文献   

2.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

3.
Eicosapentaenoic acid (EPA), but not its metabolites (docosapentaenoic acid and docosahexaenoic acid), stimulated nitric oxide (NO) production in endothelial cells in situ and induced endothelium-dependent relaxation of bovine coronary arteries precontracted with U46619. EPA induced a greater production of NO, but a much smaller and more transient elevation of intracellular Ca(2+) concentration ([Ca(2+)]i), than did a Ca(2+) ionophore (ionomycin). EPA stimulated NO production even in endothelial cells in situ loaded with a cytosolic Ca(2+) chelator 1,2-bis-o-aminophenoxythamine-N',N',N'-tetraacetic acid, which abolished the [Ca(2+)]i elevations induced by ATP and EPA. The EPA-induced vasorelaxation was inhibited by N(omega)-nitro-L-arginine methyl ester. Immunostaining analysis of endothelial NO synthase (eNOS) and caveolin-1 in cultured endothelial cells revealed eNOS to be colocalized with caveolin in the cell membrane at a resting state, while EPA stimulated the translocation of eNOS to the cytosol and its dissociation from caveolin, to an extent comparable to that of the eNOS translocation induced by a [Ca(2+)]i-elevating agonist (10 microM bradykinin). Thus, EPA induces Ca(2+)-independent activation and translocation of eNOS and endothelium-dependent vasorelaxation.  相似文献   

4.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

5.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

6.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

7.
The purpose of this investigation was to determine the impact of elevated partial pressures of O(2) on the steady state concentration of nitric oxide ((*)NO) in the cerebral cortex. Rodents with implanted O(2)- and (*)NO-specific microelectrodes were exposed to O(2) at partial pressures from 0.2 to 2.8 atmospheres absolute (ATA) for up to 45 min. Elevations in (*)NO concentration occurred with all partial pressures above that of ambient air. In rats exposed to 2.8 ATA O(2) the increase was 692 +/- 73 nM (S.E., n = 5) over control. Changes were not associated with alterations in concentrations of nitric oxide synthase (NOS) enzymes. Based on studies with knock-out mice lacking genes for neuronal NOS (nNOS) or endothelial NOS (eNOS), nNOS activity contributed over 90% to total (*)NO elevation due to hyperoxia. Immunoprecipitation studies indicated that hyperoxia doubles the amount of nNOS associated with the molecular chaperone, heat shock protein 90 (Hsp90). Both (*)NO elevations and the association between nNOS and Hsp90 were inhibited in rats infused with superoxide dismutase. Elevations of (*)NO were also inhibited by treatment with the relatively specific nNOS inhibitor, 7 nitroindazole, by the ansamycin antibiotics herbimycin and geldanamycin, by the antioxidant N-acetylcysteine, by the calcium channel blocker nimodipine, and by the N-methyl-D-aspartate inhibitor, MK 801. Hyperoxia did not alter eNOS association with Hsp90, nor did it modify nNOS or eNOS associations with calmodulin, the magnitude of eNOS tyrosine phosphorylation, or nNOS phosphorylation via calmodulin kinase. Cerebral cortex blood flow, measured by laser Doppler flow probe, increased during hyperoxia and may be causally related to elevations of steady state (*)NO concentration. We conclude that hyperoxia causes an increase in (*)NO synthesis as part of a response to oxidative stress. Mechanisms for nNOS activation include augmentation in the association with Hsp90 and intracellular entry of calcium.  相似文献   

8.
Oxidized low-density lipoprotein (Ox-LDL) is an atherogenic lipoprotein. It has been suggested that Ox-LDL causes endothelial dysfunction by decreasing the release of endothelium-derived factors (EDRF-NO) or increasing the inactivation of EDRF-NO. The mechanism by which Ox-LDL causes dysfunctional NO during early stages of atherosclerosis is not clear. The purpose of this study was to examine the role of Ox-LDL on nitric oxide synthetase (eNOS), protein kinase C (PKC) activities and cAMP production in bovine aortic endothelial cells (BAEC). Ox-LDL stimulated PKC activity of BAEC but it inhibited both eNOS activity and cAMP production. Ox-LDL partially inhibited the forskolin stimulated cAMP production. Furthermore, we observed that 8Br-cAMP treatment decreased the activity of eNOS in a concentration dependent manner. Serotonin which has a profound inhibitory effect on cAMP production also stimulated eNOS activity. Pertusis toxin treatment blocked the stimulatory action of serotonin on the stimulation of eNOS activity. Our results thus suggest that Ox-LDL inhibit the endothelium-dependent relaxation. One possible mechanism is that Ox-LDL stimulates PKC activity, which in turn increases the phosphorylation of the Gi-protein. Inhibition of Gi-protein then leads to reduced release of NO from endothelial cells and thus causes endothelial dysfunction.  相似文献   

9.
Human immunodeficiency virus (HIV)-infected patients have a higher incidence of oxidative stress, endothelial dysfunction, and cardiovascular disease than uninfected individuals. Recent reports have demonstrated that viral proteins upregulate reactive oxygen species, which may contribute to elevated cardiovascular risk in HIV-1 patients. In this study we employed an HIV-1 transgenic rat model to investigate the physiological effects of viral protein expression on the vasculature. Markers of oxidative stress in wild-type and HIV-1 transgenic rats were measured using electron spin resonance, fluorescence microscopy, and various molecular techniques. Relaxation studies were completed on isolated aortic rings, and mRNA and protein were collected to measure changes in expression of nitric oxide (NO) and superoxide sources. HIV-1 transgenic rats displayed significantly less NO-hemoglobin, serum nitrite, serum S-nitrosothiols, aortic tissue NO, and impaired endothelium-dependent vasorelaxation than wild-type rats. NO reduction was not attributed to differences in endothelial NO synthase (eNOS) protein expression, eNOS-Ser1177 phosphorylation, or tetrahydrobiopterin availability. Aortas from HIV-1 transgenic rats had higher levels of superoxide and 3-nitrotyrosine but did not differ in expression of superoxide-generating sources NADPH oxidase or xanthine oxidase. However, transgenic aortas displayed decreased superoxide dismutase and glutathione. Administering the glutathione precursor procysteine decreased superoxide, restored aortic NO levels and NO-hemoglobin, and improved endothelium-dependent relaxation in HIV-1 transgenic rats. These results show that HIV-1 protein expression decreases NO and causes endothelial dysfunction. Diminished antioxidant capacity increases vascular superoxide levels, which reduce NO bioavailability and promote peroxynitrite generation. Restoring glutathione levels reverses HIV-1 protein-mediated effects on superoxide, NO, and vasorelaxation.  相似文献   

10.
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tail-cuff) was 111+/-3, 140+/-4 and 184+/-6 mm Hg, respectively. NO synthase activity (determined by conversion of [(3)H]-L-arginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute N(G)-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10(-5) mol/l). Acetylcholine-induced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20+/-3 %, 29+/-4 % (p<0.05 vs. WKY) and 37+/-3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure.  相似文献   

11.
Nebivolol is a highly selective beta(1)-adrenergic receptor antagonist that also possesses vasodilator properties that are attributed largely to nitric oxide (NO). The objective of the present study was to elucidate in more detail the mechanisms by which nebivolol relaxes vascular smooth muscle. In the canine species, nebivolol caused relaxation of isolated precontracted rings of coronary artery and pulmonary artery largely by endothelium-dependent, NO-dependent, and cyclic GMP-dependent mechanisms. Vasorelaxation was inhibited by N(G)-methylarginine, and this inhibition was reversed by addition of excess L-arginine. Moreover, the vasorelaxant responses to nebivolol were markedly inhibited by oxyhemoglobin, methylene blue, and 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), whereas vasorelaxation was enhanced by zaprinast. Rat aortic ring preparations, however, relaxed in response to nebivolol by both endothelium-dependent and endothelium-independent mechanisms, both involving NO, and cyclic GMP. Endothelium-dependent and endothelium-independent vasorelaxation were inhibited by oxyhemoglobin, methylene blue, and ODQ. However, only endothelium-dependent vasorelaxation in response to nebivolol was inhibited by N(G)-methylarginine. Additional experiments ruled out other endothelium-independent vasorelaxant mechanisms. In conclusion, the vasodilator responses to nebivolol involve NO and cyclic GMP in both vascular endothelial and smooth muscle cells.  相似文献   

12.
Nitric oxide (NO), a mediator of various physiological and pathophysiological processes, is synthesized by three isozymes of nitric oxide synthase (NOS). Potential candidate clinical drugs should be devoid of inhibitory activity against endothelial NOS (eNOS), since eNOS plays an important role in maintaining normal blood pressure and flow. A new series of aminopiperidines as potent inhibitors of iNOS were identified from a HTS lead. From this study, we identified compound 33 as a potent iNOS inhibitor, with >25-fold selectivity over eNOS and 16-fold selectivity over nNOS.  相似文献   

13.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

14.
Nonadrenergic noncholinergic (NANC) vasodilator mechanisms may contribute to the maintenance of adult pulmonary and systemic vascular tone. However, their actions in the neonatal circulation have not been studied. We aimed to investigate NANC vasorelaxation in neonatal and 2-week-old piglet pulmonary and mesenteric arteries and to examine the potential role of nitric oxide (NO) in this phenomenon. Responses to electric field stimulation (EFS, 50V, 0.25-32 Hz) were investigated in pulmonary and mesenteric artery rings (external diameter 150-200 microm) precontracted with the thromboxane A2 mimetic U46619, in the presence of guanethidine (10 microM) and atropine (10 microM). Under these conditions, EFS resulted in a frequency dependent relaxation of newborn pulmonary (maximal relaxation of 53+/-9.1%), mesenteric (68.8.2+/-7.1%) and 2-wk-old mesenteric (46 6.3%) arteries but this relaxation was significantly reduced (4.5+/-2.2%) in 2-week-old pulmonary arteries. In neonatal pulmonary arteries, the neurotoxin tetrodotoxin (0.3 muM), the NO synthase inhibitor L-NAME (0.1 mM), and the guanylyl cyclase inhibitor ODQ (10 microM) abolished EFS-induced relaxations, suggesting that NANC relaxation of porcine neonatal pulmonary arteries is mediated by NO, which is probably neuronal in origin. However, The expression in pulmonary arteries of the neuronal NO synthase (nNOS), as determined by Western-blot analysis, increased with postnatal age whereas the expression of the endothelial NOS (eNOS) did not change. In conclusion, NANC relaxation is present in neonatal pulmonary and mesenteric arteries and it is, at least partially, mediated through NO. NANC relaxation of porcine pulmonary and mesenteric arteries decreases with postnatal maturation.  相似文献   

15.
The link between chronic alcohol consumption and cardiovascular injury including hypertension is well known. However, molecular mediators implicated with alcohol-induced elevation in blood pressure (BP) remain elusive. The aim of this study was to investigate the relationship of chronic ethanol-induced endothelial injury and elevation in BP with angiotensin II levels in rats. Male Fisher rats were divided into two groups of seven animals each and treated as follows: (1) Control (5% sucrose, orally) daily for 12 weeks and (2) ethanol (4 g kg−1, orally) daily for 12 weeks. The BP (systolic, diastolic, and mean) was recorded every week. The animals were anesthetized with pentobarbital after 12 weeks; blood and thoracic aorta were isolated and analyzed for aortic reactivity response, angiotensin II levels, and oxidative endothelial injury. The results show that the systolic, diastolic, and mean BP were significantly elevated 12 weeks after ethanol ingestion. The increased BP was related to elevated angiotensin II levels in the plasma and aorta of alcohol treated group compared to control. The aortic NADPH oxidase activity, ratio of oxidized to reduced glutathione (GSSG/GSH) and lipid peroxidation significantly increased, whereas nitric oxide (NO), endothelial NO synthase (eNOS), and vascular endothelial growth factor (VEGF) protein expressions were depressed in alcohol group compared to control. The phenylephrine-mediated vasoconstriction response was not altered, while acetylcholine-mediated vasorelaxation response was depressed in the aorta of ethanol treated rats compared to control. It is concluded that chronic ethanol ingestion induces hypertension which is correlated with elevated tissue angiotensin II levels, activation of NADPH oxidase activity causing endothelial injury, depletion of endothelial NO generating system, and impaired vascular relaxation in rats.  相似文献   

16.
The aim of the study was to investigate the effect of iNOS expression on eNOS and nNOS functional activity in porcine cerebral arteries. iNOS was induced in pig basilar arteries using lipopolysaccharide (LPS). Arteries expressing iNOS generated NO and relaxed when challenged with L-arginine (30 microM), an effect that was reduced by treatment with dexamethasone (coincubated with LPS) and prevented by the iNOS inhibitor 1400 W (administered 10 min prior to precontraction). eNOS was activated by A23187 and was found to be impaired in arteries that had iNOS induced (A23187 1 microM relaxation: control 110+/-8%, LPS-treated 50+/-16% ; p<0.05, N=5-6). This was due mainly to reduced formation of NO by A23187 (NO concentration in response to A23187 1 microM: control 25+/-6 nM, LPS-treated 0.8+/-1.2 nM; p<0.001, N=5-6), in addition to a small reduction in the vasodilator response to the NO-donors NOC-22 and SIN-1. Cerebral vasodilation produced by stimulation of intramural nitrergic nerves was impaired in arteries that had iNOS induced, and this was reversed by 1400 W (control 23+/-4% relaxation, LPS-treated 11+/-1% relaxation, LPS plus 1400 W 10 microM treated 25+/-2% relaxation; p<0.01 for control versus LPS, N=6). It is concluded that the induction of iNOS in cerebral arteries reduces NO-mediated vasodilation initiated by eNOS and by nNOS, primarily by modulation of NO formation.  相似文献   

17.
Fo Shou San (FSS) is an ancient herbal decoction comprised of Chuanxiong Rhizoma (CR; Chuanxiong) and Angelicae Sinensis Radix (ASR; Danggui) in a ratio of 2∶3. Previous studies indicate that FSS promotes blood circulation and dissipates blood stasis, thus which is being used widely to treat vascular diseases. Here, we aim to determine the cellular mechanism for the vascular benefit of FSS. The treatment of FSS reversed homocysteine-induced impairment of acetylcholine (ACh)-evoked endothelium-dependent relaxation in aortic rings, isolated from rats. Like radical oxygen species (ROS) scavenger tempol, FSS attenuated homocysteine-stimulated ROS generation in cultured human umbilical vein endothelial cells (HUVECs), and it also stimulated the production of nitric oxide (NO) as measured by fluorescence dye and biochemical assay. In addition, the phosphorylation levels of both Akt kinase and endothelial NO synthases (eNOS) were markedly increased by FSS treatment, which was abolished by an Akt inhibitor triciribine. Likewise, triciribine reversed FSS-induced NO production in HUVECs. Finally, FSS elevated intracellular Ca2+ levels in HUVECs, and the Ca2+ chelator BAPTA-AM inhibited the FSS-stimulated eNOS phosphorylation. The present results show that this ancient herbal decoction benefits endothelial function through increased activity of Akt kinase and eNOS; this effect is causally via a rise of intracellular Ca2+ and a reduction of ROS.  相似文献   

18.
Ghrelin is a novel growth hormone (GH)-releasing peptide which was isolated from the stomach. We have reported that ghrelin causes vasorelaxation in rats through GH-independent mechanisms. We investigated whether ghrelin improves endothelial dysfunction. Ghrelin was subcutaneously administered to GH-deficient rats for three weeks. After isolation of the thoracic aorta, aortic ring tension was measured to evaluate vasorelaxation. Acetylcholine-induced vasorelaxation was impaired in GH-deficient rats given placebo compared to that in normal rats given placebo. GH-deficient rats treated with ghrelin, however, showed a significant increase in the maximal relaxation as compared with those given placebo. This improvement by ghrelin was inhibited by N(G)-nitro-L-arginine methyl ester, a nonselective nitric oxide synthase (NOS) inhibitor. Western blot analysis demonstrated that treatment with ghrelin increased endothelial NOS (eNOS) expression in the aorta of GH-deficient rats. These results suggest that administration of ghrelin improves endothelial dysfunction and increases eNOS expression in rats through GH-independent mechanisms.  相似文献   

19.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

20.
Impaired vascular responsiveness in sepsis may lead to maldistribution of blood flow in organs. We hypothesized that increased production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) mediates the impaired dilation to ACh in sepsis. Using a 24-h cecal ligation and perforation (CLP) model of sepsis, we measured changes in arteriolar diameter and in red blood cell velocity (V(RBC)) in a capillary fed by the arteriole, following application of ACh to terminal arterioles of rat hindlimb muscle. Sepsis attenuated both ACh-stimulated dilation and V(RBC) increase. In control rats, arteriolar pretreatment with the NO donors S-nitroso-N-acetylpenicillamine or sodium nitroprusside reduced diameter and V(RBC) responses to a level that mimicked sepsis. In septic rats, arteriolar pretreatment with the "selective" iNOS blockers aminoguanidine (AG) or S-methylisothiourea sulfate (SMT) restored the responses to the control level. The putative neuronal NOS (nNOS) inhibitor 7-nitroindazole also restored the response toward control. At 24-h post-CLP, muscles showed no reduction of endothelial NOS (eNOS), elevation of nNOS, and, surprisingly, no induction of iNOS protein; calcium-dependent constitutive NOS (eNOS+nNOS) enzyme activity was increased whereas calcium-independent iNOS activity was negligible. We conclude that 1) AG and SMT inhibit nNOS activity in septic skeletal muscle, 2) NO could impair vasodilative responses in control and septic rats, and 3) the source of increased endogenous NO in septic muscle is likely upregulated nNOS rather than iNOS. Thus agents released from the blood vessel milieu (e.g., NO produced by skeletal muscle nNOS) could affect vascular responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号